资源简介 1.5 平面上的距离第1课时 距离公式 [教学方式:基本概念课——逐点理清式教学][课时目标]1.掌握平面上两点间的距离公式,会用两点间的距离公式解决问题.2.经历坐标法推导点到直线距离公式,掌握点到直线的距离公式及利用公式解决问题.3.理解两条平行线间距离公式的推导.会求两条平行直线的距离.逐点清(一) 两点间的距离公式[多维理解]条件 平面上两点P1(x1,y1),P2(x2,y2)距离公式 P1P2= 特别地 原点O(0,0)与任一点P(x,y)间的距离OP= 中点坐标 公式 线段P1P2的中点M(x0,y0), 则x0= ,y0= [微点练明]1.判断正误(正确的打“√”,错误的打“×”)(1)点A(0,a),点B(b,0)之间的距离为a-b. ( )(2)点A(a,0),点B(b,0)之间的距离为a-b. ( )(3)已知点A(x1,y1),B(x2,y2),当x1=x2,y1≠y2时,AB=|y2-y1|. ( )(4)当A,B两点的连线与坐标轴平行或垂直时,两点间的距离公式不适用. ( )2.A(2,1),B(4,2)两点间的距离为 ( )A.3 B.3C. D.23.已知A(a,2),B(-2,-3),C(1,6)三点,且AB=AC,则实数a的值为 ( )A.-2 B.-1C.1 D.24.已知三角形的三个顶点A(2,4),B(3,-6),C(5,2),则BC边上中线的长为 ( )A.2 B.C.11 D.3逐点清(二) 点到直线的距离公式[多维理解]1.点到直线的距离定义 点P到直线l的距离,就是从点P到直线l的垂线段的长度公式 点P(x0,y0)到直线l:Ax+By+C=0的距离为d= (其中A,B不全为0) |微|点|助|解|(1)利用公式时直线的方程必须是一般式;(2)分子含有绝对值;(3)若直线方程为Ax+By+C=0,则当A=0或B=0时公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.2.点到几种特殊直线的距离(1)点P(x0,y0)到x轴的距离d=|y0|;(2)点P(x0,y0)到y轴的距离d=|x0|;(3)点P(x0,y0)到直线y=a的距离d=|y0-a|;(4)点P(x0,y0)到直线x=b的距离d=|x0-b|.[微点练明]1.点P(-1,1)到直线l:y=-x的距离为 ( )A. B.C. D.12.已知点P(-2,3),点Q是直线l:3x+4y+3=0上的动点,则PQ的最小值为 ( )A.2 B.C. D.3.已知点A(1,2),直线l:(λ+2)x+(1-λ)y+2λ+7=0(λ∈R),则点A到l的距离的最大值为 ( )A.3 B.C.3 D.54.已知过点P(1,2)的直线l,且点A(2,3)与点B(0,-5)到直线l的距离相等,求直线l的方程.逐点清(三) 两条平行直线间的距离公式[多维理解]两条平行直线间的距离 指夹在这两条平行直线间的公垂线段的长公式 两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0之间的距离d= (其中A,B不全为0,且C1≠C2) |微|点|助|解|(1)使用此公式的两个条件:直线方程都为一般式;x,y的系数对应相等.(2)①两条直线都与x轴垂直时,l1:x=x1,l2:x=x2,则d=|x2-x1|;②两条直线都与y轴垂直时,l1:y=y1,l2:y=y2,则d=|y2-y1|.[微点练明]1.已知直线l1:2x+y-1=0,l2:4x+2y+1=0,则l1,l2间的距离为 ( )A. B.C. D.2.若直线l1:x+ay-2=0与l2:2x+(a2+1)y-2=0平行,则两条直线之间的距离为 ( )A. B.1C. D.23.与l:x-y+1=0距离为的直线方程为 ( )A.x-y+1+=0或x-y+1-=0B.x-y+2=0或x-y=0C.x-y+2=0或x-y+1-=0D.x-y+1+=0或x-y=04.若两条平行直线l1:x-2y+m=0(m>0)与l2:x+ny-3=0之间的距离是,则m+n= ( )A.0 B.1C.-2 D.-1第1课时 距离公式[逐点清(一)][多维理解] [微点练明]1.(1)× (2)× (3)√ (4)×2.C 3.A 4.A[逐点清(二)][多维理解] 1.[微点练明]1.A 2.B 3.D4.解:当直线l的斜率不存在时,直线l的方程为x=1,点A(2,3)与点B(0,-5)到x=1的距离为1,符合题意.当直线l的斜率存在时,设斜率为k,则可设直线方程为y-2=k(x-1),即kx-y-k+2=0,由于点A(2,3)与点B(0,-5)到直线l的距离相等,则=,解得k=4,故直线l的方程为4x-y-2=0,综上所述,直线l的方程为4x-y-2=0或x=1.[逐点清(三)][多维理解] [微点练明]1.C 2.C 3.B 4.A1 / 4(共42张PPT)1.5平面上的距离距离公式[教学方式:基本概念课——逐点理清式教学]第1课时课时目标1.掌握平面上两点间的距离公式,会用两点间的距离公式解决问题.2.经历坐标法推导点到直线距离公式,掌握点到直线的距离公式及利用公式解决问题.3.理解两条平行线间距离公式的推导.会求两条平行直线的距离.CONTENTS目录123逐点清(一) 两点间的距离公式逐点清(二) 点到直线的距离公式逐点清(三) 两条平行直线间的距离公式4课时检测逐点清(一) 两点间的距离公式01多维理解条件 平面上两点P1(x1,y1),P2(x2,y2)距离公式 P1P2=_____________________________特别地 原点O(0,0)与任一点P(x,y)间的距离OP=_________中点坐标 公式 线段P1P2的中点M(x0,y0),则x0=_______,y0=______1.判断正误(正确的打“√”,错误的打“×”)(1)点A(0,a),点B(b,0)之间的距离为a-b.( )(2)点A(a,0),点B(b,0)之间的距离为a-b.( )(3)已知点A(x1,y1),B(x2,y2),当x1=x2,y1≠y2时,AB=|y2-y1|.( )(4)当A,B两点的连线与坐标轴平行或垂直时,两点间的距离公式不适用.( )×××√微点练明2.A(2,1),B(4,2)两点间的距离为 ( )A.3 B.3C. D.2解析:由两点间距离公式得AB==.√3.已知A(a,2),B(-2,-3),C(1,6)三点,且AB=AC,则实数a的值为 ( )A.-2 B.-1C.1 D.2解析:由两点间的距离公式及AB=AC可得,=,解得a=-2.√4.已知三角形的三个顶点A(2,4),B(3,-6),C(5,2),则BC边上中线的长为 ( )A.2 B.C.11 D.3解析:设BC的中点为D(x,y),由中点坐标公式得所以D(4,-2),所以AD===2.故选A.√逐点清(二) 点到直线的距离公式02多维理解1.点到直线的距离定义 点P到直线l的距离,就是从点P到直线l的垂线段的长度公式 点P(x0,y0)到直线l:Ax+By+C=0的距离为d=_______________(其中A,B不全为0)|微|点|助|解|(1)利用公式时直线的方程必须是一般式;(2)分子含有绝对值;(3)若直线方程为Ax+By+C=0,则当A=0或B=0时公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.2.点到几种特殊直线的距离(1)点P(x0,y0)到x轴的距离d=|y0|;(2)点P(x0,y0)到y轴的距离d=|x0|;(3)点P(x0,y0)到直线y=a的距离d=|y0-a|;(4)点P(x0,y0)到直线x=b的距离d=|x0-b|.微点练明1.点P(-1,1)到直线l:y=-x的距离为( )A. B.C. D.1√解析:点P到直线l:3x+4y=0的距离d==.2.已知点P(-2,3),点Q是直线l:3x+4y+3=0上的动点,则PQ的最小值为 ( )A.2 B.C. D.解析:由题意知PQ的最小值为点P到直线l的距离.即(PQ)min==,故选B.√3.已知点A(1,2),直线l:(λ+2)x+(1-λ)y+2λ+7=0(λ∈R),则点A到l的距离的最大值为 ( )A.3 B.C.3 D.5解析:将直线l的方程变形为λ(x-y+2)+2x+y+7=0,由得所以直线l过定点B(-3,-1),当l⊥AB时,点A到l的距离最大,故最大距离为=5.故选D.√4.已知过点P(1,2)的直线l,且点A(2,3)与点B(0,-5)到直线l的距离相等,求直线l的方程.解:当直线l的斜率不存在时,直线l的方程为x=1,点A(2,3)与点B(0,-5)到x=1的距离为1,符合题意.当直线l的斜率存在时,设斜率为k,则可设直线方程为y-2=k(x-1),即kx-y-k+2=0,由于点A(2,3)与点B(0,-5)到直线l的距离相等,则=,解得k=4,故直线l的方程为4x-y-2=0,综上所述,直线l的方程为4x-y-2=0或x=1.逐点清(三) 两条平行直线间的距离公式03多维度理解两条平行直线间的距离 指夹在这两条平行直线间的公垂线段的长公式 两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0之间的距离d=___________(其中A,B不全为0,且C1≠C2)|微|点|助|解|(1)使用此公式的两个条件:直线方程都为一般式;x,y的系数对应相等.(2)①两条直线都与x轴垂直时,l1:x=x1,l2:x=x2,则d=|x2-x1|;②两条直线都与y轴垂直时,l1:y=y1,l2:y=y2,则d=|y2-y1|.微点练明1.已知直线l1:2x+y-1=0,l2:4x+2y+1=0,则l1,l2间的距离为 ( )A. B.C. D.解析:将直线l1方程化为4x+2y-2=0,由平行直线的距离公式得d==.√2.若直线l1:x+ay-2=0与l2:2x+(a2+1)y-2=0平行,则两条直线之间的距离为 ( )A. B.1C. D.2解析:依题意,由两条直线平行可知2a=a2+1,解得a=1,所以两条直线分别为x+y-2=0,x+y-1=0,可得两条直线之间的距离为=,故选C.√3.与l:x-y+1=0距离为的直线方程为( )A.x-y+1+=0或x-y+1-=0 B.x-y+2=0或x-y=0C.x-y+2=0或x-y+1-=0 D.x-y+1+=0或x-y=0解析:依题意,设所求直线方程为x-y+m=0,则两条平行直线间的距离d==,解得m=0或m=2,所以所求直线方程为x-y+2=0或x-y=0.√4.若两条平行直线l1:x-2y+m=0(m>0)与l2:x+ny-3=0之间的距离是,则m+n=( )A.0 B.1C.-2 D.-1解析:由题意两条直线平行,则=,解得n=-2,又d==,而m>0,所以m=2.所以m+n=0.√课时检测041345678910111213141521.已知点(x,y)到原点的距离等于1,则实数x,y满足的条件是 ( )A.x2-y2=1 B.x2+y2=0C.=1 D.=0√解析:由两点间的距离公式得=1.161567891011121314152342.已知直线y=x上的两点P,Q的横坐标分别是1,5,则PQ等于 ( )A.4 B.4C.2 D.2√解析:∵P(1,1),Q(5,5),∴PQ==4.161567891011121314153423.已知点A(6,0),P在直线y=-x上,AP=3,则P点的个数是( )A.0 B.1C.2 D.3√解析:因为点A(6,0)到直线y=-x的距离为=3=AP,所以P点的个数是1.161567891011121314153424.已知点(0,1)到直线mx+3y-2=0的距离是,那么m的值是( )A.4 B.-3C.4或-3 D.-4或4√解析:由题意,=,解得m=±4.161567891011121314153425.已知点P(-2,5)为平面直角坐标系内一点,线段PM的中点是(1,0),那么点M到原点O的距离为 ( )A.41 B.C. D.39√解析:设M(x,y),由中点坐标公式得=1,=0,解得x=4,y=-5.所以点M(4,-5).则OM==.故选B.161567891011121314153426.已知两条平行直线2x-y+3=0和ax-y+4=0间的距离为d,则a,d分别为 ( )A.a=2,d= B.a=2,d=C.a=-2,d= D.a=-2,d=√解析:因为直线2x-y+3=0与直线ax-y+4=0平行,所以-2+a=0,解得a=2,所以两直线分别为2x-y+3=0和2x-y+4=0,所以d==.161567891011121314153427.在△ABC中,已知A(4,1),B(7,5),C(-4,7),D为BC边的中点,则线段AD的长是 ( )A.2 B.3C. D.√解析:由中点坐标公式可得,BC边的中点D.由两点间的距离公式得AD==.161567891011121314153428.已知直线l过原点,若A(1,0),B(0,1)两点到直线l的距离相等,则直线l的方程为 ( )A.x-y=0 B.x+y=0C.x+y=0或x-y=0 D.x+y+1=0或x-y-1=0√解析:依题意,直线l过原点,A(1,0),B(0,1)两点到直线l的距离相等,易知斜率存在,故直线l可设为y=kx,则=,解得k=±1,即直线l的方程为x+y=0或x-y=0.161567891011121314153429.与点M(2,1)之间的距离为2,且在x轴上的截距为4的直线是 ( )A.x=4 B.3x-4y-12=0C.x=4或3x-4y-12=0 D.y=4或3x-4y-12=0√解析: x=4与M(2,1)的距离为2,且在x轴上的截距为4,故x=4符合要求;对于直线3x-4y-12=0,有d==2,且当y=0时,x=4,故也符合要求;y=4与M(2,1)的距离为3且与x轴无交点,不符合要求.∴x=4,3x-4y-12=0都是与点M(2,1)距离为2且在x轴上的截距为4的直线.故选C.1615678910111213141534210.已知P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则PQ的最小值为( )A. B.C. D.√解析:易知直线3x+4y-12=0与6x+8y+5=0平行,故PQ的最小值即两条平行直线间的距离,故d==.1615678910111213141534211.(5分)已知直线l1:x+y-1=0,l2:x+y+a=0,且两直线间的距离为,则a=_________. 解析:由两平行直线间的距离公式得d==,即|a+1|=2,∴a=-3或a=1.-3或11615678910111213141534212.(5分)已知直线l与m:x-y+c=0(c<0)平行,且l,m之间的距离与点A(0,2)到l的距离均为1,则l在y轴上的截距为__________. 解析:由直线l与m:x-y+c=0(c<0)平行,设直线l的方程为x-y+t=0,因为l,m之间的距离与点A(0,2)到l的距离均为1,则解得所以直线l的方程为x-y=0,即y=x,故直线l在y轴上的截距为0.01615678910111213141534213.(5分)已知A(5,2a-1),B(a+1,a-4),当AB取最小值时,实数a的值为_________. 解析:∵A(5,2a-1),B(a+1,a-4),∴AB====,∴当a=时,AB取得最小值.1615678910111213141534214.(5分)已知A(-2,-3),B(2,-1),C(0,2),则△ABC的面积为_________. 解析:由A(-2,-3),B(2,-1)可得直线AB方程为= x-2y-4=0,AB==2,点C(0,2)到直线AB的距离为=,所以△ABC的面积为×2×=8.81615678910111213141534215.(10分)已知直线ax+2y-1=0和x轴,y轴分别交于A,B两点,且线段AB的中点到原点的距离为,求a的值.解:由题易知a≠0,在直线ax+2y-1=0中,令y=0,有x=,则A,令x=0,有y=,则B,故AB的中点为,∵线段AB的中点到原点的距离为,∴=,解得a=±2.所以a的值为2或-2.1615678910111213141534216.(15分)已知直线l1:2x+3y+18=0,l2:2x+3y-8=0,在l1上任取点A,在l2上任取点B,过线段AB的中点作l2的平行线l3.(1)求直线l1与l2之间的距离;(7分)解:易知l1与l2平行,所以两平行直线l1与l2间的距离为d==2.(2)求直线l3的方程.(8分)解:由l3与l2平行可知,设l3的方程为2x+3y+C=0(-816课时检测(八) 距离公式(标的题目为推荐讲评题,配有精品课件.选择、填空题请在后面的答题区内作答)1.已知点(x,y)到原点的距离等于1,则实数x,y满足的条件是 ( )A.x2-y2=1 B.x2+y2=0C.=1 D.=02.已知直线y=x上的两点P,Q的横坐标分别是1,5,则PQ等于 ( )A.4 B.4C.2 D.23.已知点A(6,0),P在直线y=-x上,AP=3,则P点的个数是 ( )A.0 B.1C.2 D.34.已知点(0,1)到直线mx+3y-2=0的距离是,那么m的值是 ( )A.4 B.-3C.4或-3 D.-4或45.已知点P(-2,5)为平面直角坐标系内一点,线段PM的中点是(1,0),那么点M到原点O的距离为 ( )A.41 B.C. D.396.已知两条平行直线2x-y+3=0和ax-y+4=0间的距离为d,则a,d分别为 ( )A.a=2,d= B.a=2,d=C.a=-2,d= D.a=-2,d=7.在△ABC中,已知A(4,1),B(7,5),C(-4,7),D为BC边的中点,则线段AD的长是 ( )A.2 B.3C. D.8.已知直线l过原点,若A(1,0),B(0,1)两点到直线l的距离相等,则直线l的方程为 ( )A.x-y=0B.x+y=0C.x+y=0或x-y=0D.x+y+1=0或x-y-1=09.与点M(2,1)之间的距离为2,且在x轴上的截距为4的直线是 ( )A.x=4B.3x-4y-12=0C.x=4或3x-4y-12=0D.y=4或3x-4y-12=010.已知P,Q分别为直线3x+4y-12=0与6x+8y+5=0上任意一点,则PQ的最小值为 ( )A. B.C. D.11.(5分)已知直线l1:x+y-1=0,l2:x+y+a=0,且两直线间的距离为,则a= . 12.(5分)已知直线l与m:x-y+c=0(c<0)平行,且l,m之间的距离与点A(0,2)到l的距离均为1,则l在y轴上的截距为 . 13.(5分)已知A(5,2a-1),B(a+1,a-4),当AB取最小值时,实数a的值为 . 14.(5分)已知A(-2,-3),B(2,-1),C(0,2),则△ABC的面积为 . 15.(10分)已知直线ax+2y-1=0和x轴,y轴分别交于A,B两点,且线段AB的中点到原点的距离为,求a的值.16.(15分)已知直线l1:2x+3y+18=0,l2:2x+3y-8=0,在l1上任取点A,在l2上任取点B,过线段AB的中点作l2的平行线l3.(1)求直线l1与l2之间的距离;(7分)(2)求直线l3的方程.(8分)课时检测(八)1.选C 由两点间的距离公式得=1.2.选B ∵P(1,1),Q(5,5),∴PQ==4.3.选B 因为点A(6,0)到直线y=-x的距离为=3=AP,所以P点的个数是1.4.选D 由题意,=,解得m=±4.5.选B 设M(x,y),由中点坐标公式得=1,=0,解得x=4,y=-5.所以点M(4,-5).则OM==.故选B.6.选B 因为直线2x-y+3=0与直线ax-y+4=0平行,所以-2+a=0,解得a=2,所以两直线分别为2x-y+3=0和2x-y+4=0,所以d==.7.选C 由中点坐标公式可得,BC边的中点D.由两点间的距离公式得AD==.8.选C 依题意,直线l过原点,A(1,0),B(0,1)两点到直线l的距离相等,易知斜率存在,故直线l可设为y=kx,则=,解得k=±1,即直线l的方程为x+y=0或x-y=0.9.选C x=4与M(2,1)的距离为2,且在x轴上的截距为4,故x=4符合要求;对于直线3x-4y-12=0,有d==2,且当y=0时,x=4,故也符合要求;y=4与M(2,1)的距离为3且与x轴无交点,不符合要求.∴x=4,3x-4y-12=0都是与点M(2,1)距离为2且在x轴上的截距为4的直线.故选C.10.选C 易知直线3x+4y-12=0与6x+8y+5=0平行,故PQ的最小值即两条平行直线间的距离,故d==.11.解析:由两平行直线间的距离公式得d==,即|a+1|=2,∴a=-3或a=1.答案:-3或112.解析:由直线l与m:x-y+c=0(c<0)平行,设直线l的方程为x-y+t=0,因为l,m之间的距离与点A(0,2)到l的距离均为1,则解得所以直线l的方程为x-y=0,即y=x,故直线l在y轴上的截距为0.答案:013.解析:∵A(5,2a-1),B(a+1,a-4),∴AB====,∴当a=时,AB取得最小值.答案:14.解析:由A(-2,-3),B(2,-1)可得直线AB方程为= x-2y-4=0,AB==2,点C(0,2)到直线AB的距离为=,所以△ABC的面积为×2×=8.答案:815.解:由题易知a≠0,在直线ax+2y-1=0中,令y=0,有x=,则A,令x=0,有y=,则B,故AB的中点为,∵线段AB的中点到原点的距离为,∴=,解得a=±2.所以a的值为2或-2.16.解:(1)易知l1与l2平行,所以两平行直线l1与l2间的距离为d==2.(2)由l3与l2平行可知,设l3的方程为2x+3y+C=0(-81 / 2 展开更多...... 收起↑ 资源列表 1.5 第1课时 距离公式.docx 1.5 第1课时 距离公式.pptx 课时检测(八) 距离公式.docx