山东省青岛市2025届中考数学试卷(含答案)

资源下载
  1. 二一教育资源

山东省青岛市2025届中考数学试卷(含答案)

资源简介

山东省青岛市2025届中考数学试卷
一、单选题
1.的相反数为( )
A. B.6 C. D.
2.围棋是中华民族发明的博弈活动.下列用棋子摆放的图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
3.2025年5月,我国在西昌卫星发射中心成功将行星探测工程天问二号探测器发射升空,天问二号探测器将对小行星2016HO3和主带彗星311P开启科学探测,其中一个目标所在轨道与太阳间距将达到亿公里.亿,将374000000用科学记数法表示为( )
A. B. C. D.
4.如图①,榫卯是古代中国建筑、家具及其它器械的主要结构方式.图②的左视图是( )
A. B. C. D.
5.如图,在平面直角坐标系中,点A,B,C都在格点上,将关于y轴的对称图形绕原点O旋转,得到,则点A的对应点的坐标是( )
A. B. C. D.
6.下列计算正确的是( )
A. B. C. D.
7.如图,四边形是的内接四边形,,,直线与相切于点.若,则的度数为( )
A. B. C. D.
8.如图,在三角形纸片中,,,将纸片沿着过点A的直线折叠,使点落在边上的点处,折痕交于点;再将纸片沿着过点的直线折叠,使点落在边上的点处,折痕交于点.下列结论成立的是( )
A. B.
C. D.
9.将二次函数的图象在轴下方的部分以轴为对称轴翻折到轴上方,得到如图所示的新函数图象,下列对新函数的描述正确的是( )
A.图象与轴的交点坐标是 B.当时,函数取得最大值
C.图象与轴两个交点之间的距离为 D.当时,的值随值的增大而增大
二、填空题
10.因式分解 .
11.为弘扬传统文化,培养学生的劳动意识,某校在端午节期间举行了包粽子活动,每个粽子的标准质量为.甲、乙两名同学各包了个粽子,每个粽子的质量(单位:)如下:
甲:,,,,;
乙:,,,,.
甲、乙两名同学包的粽子的质量比较稳定的是 (填“甲”或“乙”).
12.实数,在数轴上对应点的位置如图所示,则 (填“”,“”或“”).
13.如图,正八边形的顶点,,,在坐标轴上,顶点,,,在第一象限.点在反比例函数的图象上,若,则的值为 .
14.如图,在扇形中,,,点在上,且.延长到,使.以,为邻边作平行四边形,则图中阴影部分的面积为 (结果保留).
15.如图,在正方形中,,分别为,的中点.连接并延长交于点,交的延长线于点,为的中点,连接,,.下列结论:①;②;③;④.正确的是 (填写序号).
三、解答题
16.已知:如图,是内部一点.求作:等腰,使点,分别在射线,上,且底边经过点.
17.(1)计算:;
(2)解不等式组:并写出它的整数解.
18.京剧以其独特的艺术魅力和深厚的文化底蕴闻名于世,京剧的角色有生、旦、净、丑等.现有4张不透明卡片,正面分别印有“生”、“旦”、“净”、“丑”四种角色的卡通人物,卡片除正面图案外其余都相同.将这4张卡片背面朝上洗匀,先随机抽取一张,再从剩下的3张中随机抽取一张.利用画树状图或列表的方法表示所有可能出现的结果,并求抽取到的两张卡片中有“生”的概率.
19.某校举行科技节,科技小组为了解学生使用智能软件的情况开展了统计活动.
【收集数据】
科技小组设计了如下调查问卷,在全校随机抽取部分学生进行调查,收集得到“问题1”和“问题2”的数据.(被调查学生两个问题全部按要求作答并提交)
调查问卷
问题1:你使用智能软件的主要目的是( ).(单选) A.学习管理 B.健康 C.时间管理 D.其他 问题2:你每周使用智能软件的时间是____分钟.
【整理和表示数据】
第一步:将“问题1”的数据进行整理后,绘制成如下的人数统计表;
第二步:将“问题2”中每周使用智能软件的时间(分钟)整理分成4组:①,②,③,④,并绘制成如下的频数直方图.
学生使用智能软件主要目的的人数统计表
目的 人数累计 人数
A 正正正正正正 30
B 正正丅 12
C 正正正 15
D 3
学生每周使用智能软件时间的频数直方图
(1)若将“问题1”的数据绘制成扇形统计图,则目的“B”对应的扇形圆心角的度数为____°;
(2)补全频数直方图;
【分析数据,解答问题】
(3)已知“”这组的数据是:60,60,62,62,63,65,65,65,70,70,75,75,75,75,75,80,80,80,80,85.被调查的全部学生每周使用智能软件时间的中位数为____分钟;
(4)全校共有1200名学生,请你估计使用智能软件主要用于“学习管理”的人数.
20.学校综合实践小组测量博学楼的高度.如图,点,,,,在同一平面内,点,,在同一水平线上,一组成员从19米高的厚德楼顶部测得博学楼的顶部的俯角为,另一组成员沿方向从厚德楼底部点向博学楼走15米到达点,在点测得博学楼顶部的仰角为,求博学楼的高度.(参考数据:,,,,,)
21.某公司成功研发了一款新型产品,接到了首批订单,产品数量为2100件.公司有甲、乙两个生产车间,甲车间每天生产的数量是乙车间的1.5倍.先由甲、乙两个车间共同完成1500件,剩余产品再由乙车间单独完成,前后共用10天完成这批订单.
(1)求甲、乙两个车间每天分别能生产多少件产品;
(2)首批订单完成后,公司将继续生产30天该产品,每天只能安排一个车间生产,如果安排甲车间生产的天数不多于乙车间的2倍,要使这30天的生产总量最大,那么应如何安排甲、乙两个车间的生产天数?
22.如图,在中,为的中点,为延长线上一点,连接,,过点作交的延长线于点,连接.
(1)求证:;
(2)已知____(从以下两个条件中选择一个作为已知,填写序号),请判断四边形的形状,并证明你的结论.
条件①:;
条件②:.
(注:如果选择条件①条件②分别进行解答,按第一个解答计分)(第22题)
23.【定义新运算】
对正实数,,定义运算“”,满足.
例如:当时,.
(1)当时,请计算:__________;
【探究运算律】
对正实数,,运算“”是否满足交换律?



运算“”满足交换律.
(2)对正实数,,,运算“”是否满足结合律?请说明理由;
【应用新运算】
(3)如图,正方形是由四个全等的直角三角形和中间的小正方形拼成,,,且.若正方形与正方形的面积分别为26和16,则的值为__________.
24.小磊和小明练习打网球.在一次击球过程中,小磊从点正上方1.8米的点将球击出.
信息一:在如图所示的平面直角坐标系中,为原点,在轴上,球的运动路线可以看作是二次函数(,为常数)图象的一部分,其中(米)是球的高度,(米)是球和原点的水平距离,图象经过点,.
信息二:球和原点的水平距离(米)与时间(秒)()之间近似满足一次函数关系,部分数据如下:
(秒) 0 0.4 0.6 …
(米) 0 4 6 …
(1)求与的函数关系式;
(2)网球被击出后经过多长时间达到最大高度?最大高度是多少?
(3)当为秒时,小明将球击回、球在第一象限的运动路线可以看作是二次函数(,为常数)图象的一部分,其中(米)是球的高度,(米)是球和原点的水平距离.当网球所在点的横坐标为,纵坐标大于等于时,的取值范围为________(直接写出结果).
25.如图①,在中,,,,将沿方向平移,得到,过点作,交的延长线于点,为的中点.点从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为.连接,,.设运动时间为().
解答下列问题:
(1)当时,求的值;
(2)如图②,当时,设的面积为(),求与之间的函数关系式;
(3)当时,是否存在某一时刻,使是直角三角形?若存在,求出的值;若不存在,请说明理由.
参考答案
题号 1 2 3 4 5 6 7 8 9
答案 B D B A A D C A C
10.
【分析】本题考查的是综合提公因式与公式法分解因式,先提公因式3,再利用平方差公式分解因式即可.
【详解】解:

故答案为:.
11.甲
12.
13./
14.
15.①④
16.见解析
解:如图,等腰即为所作:
17.(1)7;(2);
(1)解:

(2)解:不等式组为,
则有,解得,
则有,解得,
∴不等式组的解集为,
则整数解为.
18.
解:画树状图如下:
由树状图可知一共有12种等可能性的结果数,其中抽取到的两张卡片中有“生”的结果数有6种,
∴抽取到的两张卡片中有“生”的概率是.
19.(1)72;(2)作图见解析;(3)61;(4)600人
(1)解:由题意得,目的“B”对应的扇形圆心角的度数为:,
故答案为:;
(2)解:由(1)知总人数为(人),
∴每周使用智能软件的时间在这一组的人数为:,
∴补全频数分布直方图为:
(3)由于每周使用智能软件的时间在和人数分别为,而总人数为人,则中位数为第人使用智能软件的时间的平均数,由“”这组的数据可得第人使用智能软件的时间为分钟,
∴中位数为,
故答案为:61;
(4)(人),
答:估计使用智能软件主要用于“学习管理”的人数为人.
20.博学楼的高度为9米
解:过点作于点,由题意得,,,,,
∵,
∴四边形是矩形,
∴,
在中,∵,
∴,
∴设,
则,,
在中,∵,
∴,
解得:,
∴,
答:博学楼的高度为9米.
21.(1)乙车间每天能生产件产品,则甲车间每天能生产件产品
(2)安排甲车间生产天,则乙车间生产天
(1)解:设乙车间每天能生产件产品,则甲车间每天能生产件产品,
由题意得:,
解得:,
经检验:是原方程的解,且符合题意,
则(件),
答:乙车间每天能生产件产品,则甲车间每天能生产件产品;
(2)解:设安排甲车间生产天,则乙车间生产天,
由题意得:,
解得:,
设生产总量为,由题意得:

∵,
∴随着的增大而增大,
∴当时,最大,即这30天的生产总量最大,
∴,
∴安排甲车间生产天,则乙车间生产天.
22.(1)证明见解析
(2)条件①,四边形为矩形;条件②,四边形为菱形,证明见解析
(1)证明:∵,
∴,,
∵为的中点,
∴,

(2)解:选择条件①,四边形为矩形,理由如下:

∴,
∵,
∴四边形为平行四边形,
∵四边形是平行四边形,
∴,
∵,
∴,
∵,
∴,
∴,
∴四边形为矩形;
选择条件②,四边形为菱形,理由如下:

∴,
∵,
∴四边形为平行四边形,
∵四边形是平行四边形,
∴,
∵,
∴,
∴四边形为菱形.
23.(1)a;(2)满足,理由见解析;(3)
(1)解:由新定义得,;
(2)解:对正实数,,,运算“”满足结合律,理由如下:
左边:,
右边:,
∴左边右边,
∴对正实数,,,运算“”满足结合律;
(3)由题意得,,
∴,
∵,,且,正方形的面积为26,
∴,
∵四个直角三角形全等,
∴,
∴,
∵正方形的面积为16,
∴,
∴,
∴,
∴,
∴,
∴(舍负),
∴,
故答案为:.
24.(1)
(2)网球被击出后经过秒达到最大高度,最大高度是米
(3)
(1)解:∵图象经过点,,

解得:,
∴与的函数关系式为;
(2)解:由表格可知,
∴设球和原点的水平距离(米)与时间(秒)的关系式为:,
代入得:,
解得:,
∴,
对于,,
∴开口向下,
∵对称轴为:直线
∴当时,,
此时,
解得:,
∴网球被击出后经过秒达到最大高度,最大高度是米;
(3)解:由题意得,当时,,
∴,
∴击球点位置为,
将代入,
则,
∴,
∴,
∵时,,
∴,
解得:,
故答案为:.
25.(1);
(2);
(3)的值为或.
(1)解:由题意得,,
∵在中,,,,
∴,
由平移的性质得,,,,,
∵为的中点,
∴,
∵,,
∴,即,
∵,
∴,
∴,
∴,即,
解得;
(2)解:当时,∴点在线段上,作于点,作于点,
∵,,
∴,,
∵,
∴,即,
∴,
同理,即,
∴,
∵,
∴,


∴;
(3)解:存在,理由如下,
由题意,
当时,作于点,交延长线于点,
同理,,,
∴,,
在中,,
∵,
∴,,
∴,,
∴,,
∴,
∵,
∴,
∴,
∴,即,
整理得,
解得,
∵,
∴;
当时, 作于点,
∵,
∴,
∴,即,
∴,,
∵,
∴,
∴,
∴,即,
整理得,
解得,
∵,
∴;
综上,的值为或.

展开更多......

收起↑

资源预览