资源简介 中小学教育资源及组卷应用平台第14讲 二次函数的应用考点展示·课标透视中考考点 新课标要求二次函数的实际应用-图形面积问题 通过对实际问题的分析,体会二次函数的意义;能解决相应的实际问题.二次函数的实际应用-利润最值问题二次函数的实际应用-其他问题知识导航·学法指引分类研究·深度理解考点一 二次函数的应用1. 用二次函数解决实际问题的一般步骤:1)审:仔细审题,理清题意;2)设:找出题中的变量和常量,分析它们之间的关系,与图形相关的问题要结合图形具体分析,设出适当的未知数;3)列:用二次函数表示出变量和常量之间的关系,建立二次函数模型,写出二次函数的解析式;4)解:依据已知条件,借助二次函数的解析式、图像和性质等求解实际问题;5)检:检验结果,进行合理取舍,得出符合实际意义的结论.【注意】二次函数在实际问题中的应用通常是在一定的取值范围内,一定要注意是否包含顶点坐标,如果顶点坐标不在取值范围内,应按照对称轴一侧的增减性探讨问题结论.2. 利用二次函数解决实际问题的常见类型常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等,对此类问题要正确地建立模型,选择合理的位置建立平面直角坐标系是解决此类问题的关键,然后用待定系数法求出函数表达式,利用函数性质解决问题.【典例1】一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?【考点】二次函数的应用..【专题】二次函数的应用;应用意识.【答案】见试题解答内容【分析】(1)求出抛物线的顶点坐标为(2,3),设抛物线为 y=a(x﹣2)2+3,用待定系数法可得y(x﹣2)2+3;当x=0时,y4+32.44,知球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y(x﹣2﹣m)2+3,把点(0,2.25)代入得 m=﹣5(舍去)或m=1,即知当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.【解答】解:(1)∵8﹣6=2,∴抛物线的顶点坐标为(2,3),设抛物线为 y=a(x﹣2)2+3,把点A(8,0)代入得:36a+3=0,解得a,∴抛物线的函数表达式为y(x﹣2)2+3;当x=0时,y4+32.44,∴球不能射进球门.(2)设小明带球向正后方移动m米,则移动后的抛物线为y(x﹣2﹣m)2+3,把点(0,2.25)代入得:2.25(0﹣2﹣m)2+3,解得 m=﹣5(舍去)或m=1,∴当时他应该带球向正后方移动1米射门,才能让足球经过点O正上方2.25m处.【点评】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题解决.【典例2】(2025·新疆·中考真题)天山胜利隧道预计于2025年建成通车,它将成为世界上最长的高速公路隧道,能大大提升区域交通效率,促进经济发展.如图是隧道截面图,其轮廓可近似看作是抛物线的一部分.若隧道底部宽12米,高8米,按照如图所示的方式建立平面直角坐标系.(1)求抛物线的函数解析式;(2)该隧道设计为单向双车道通行,车辆顶部在竖直方向上与隧道的空隙不少于0.5米,当两辆车在隧道内并排行驶时,需沿中心线两侧行驶,且两车至少间隔2米(中心线宽度不计).若宽3米,高3.5米的两辆车并排行驶,能否安全通过?请说明理由.【答案】(1)(2)能安全通过,见解析【分析】本题考查了二次函数的实际应用,正确理解题意是解题的关键.(1)先得到顶点坐标,然后设顶点式,再代入即可求解,继而得到函数解析式;(2)先求出点坐标,然后求出点距离抛物线的距离,然后减去车辆的高度,得到的差值与比较即可.【详解】(1)解:由题意得,顶点为,即,设抛物线的解析式为:代入点得,解得:,∴抛物线解析式为;(2)解:能安全通过,理由如下:如图,由题意得:,将代入,则,∵,∴能安全通过.【典例3】(2025·贵州·中考真题)用石块打水漂是一项有趣的活动.抛掷后的石块与平静的水面接触.石块会在空中近似的形成一组抛物线的运动路径.如图①,小星站在河边的安全位置用一个石块打水漂,石块在空中飞行的高度y与水平距离之间的关系如图②所示.石块第一次与水面接触于点,运动路径近似为抛物线,且,石块在水面上弹起后第二次与水面接触于点,运动路径近似为抛物线,且.(小星所在地面、水面在同一平面内,且石块形状大小、空气阻力等因素忽略不计)(1)如图②,当时,若点坐标为,求抛物线的表达式;(2)在(1)的条件下,若,在水面上有一个截面宽,高的矩形的障碍物,点的坐标为,判断此时石块沿抛物线运动时是否能越过障碍物?请说明理由;(3)小星在抛掷石块时,若的顶点需在一个正方形区域内(包括边界),且点在和之间(包括这两点),其中,求的取值范围.(在抛掷过程中正方形与拋物线在同一平面内)【答案】(1)(2)不能,理由见解析(3)【分析】(1)利用待定系数法求解即可;(2)首先得到,然后求出,然后将代入求解判断即可;(3)首先求出,然后由越小开口越大,越大开口越小,点在和之间(包括这两点)得到当抛物线顶点为点M,且经过点时,开口最大,此时a最大,当抛物线顶点为点P,且经过点时,开口最小,此时a最小,然后分别利用待定系数法求解即可.【详解】(1)∵当时,∵点坐标为∴∴∴抛物线的表达式为;(2)不能,理由如下:∵,点坐标为∴∴∵点的坐标为,∴∴将代入∴此时石块沿抛物线运动时不能越过障碍物;(3)∵正方形,∴∴如图所示,∵抛物线开口向下∴∵越小开口越大,越大开口越小,点在和之间(包括这两点)∴由图象可得,当抛物线顶点为点M,且经过点时,开口最大,此时a最大∴设的表达式为将代入得,解得;∴由图象可得,当抛物线顶点为点P,且经过点时,开口最小,此时a最小∴设的表达式为将代入得,解得;∴的取值范围为.【点睛】此题考查了二次函数的应用,待定系数法求二次函数解析式,正方形的性质等知识,数形结合是解题的关键.考点二 二次函数考题类型研究 题型01 最大利润问题利用二次函数解决利润最值的方法:利润问题主要涉及两个等量关系:利润=售价-进价,总利润=单件商品的利润x销售量,在解答此类问题时,应建立二次函数模型,转化为函数的最值问题,然后列出相应的函数解析式,从而解决问题. 题型02 拱桥问题利用二次函数解决拱桥/隧道/拱门类问题的方法: 先建立适当的平面直角坐标系,一般选择抛物线形建筑物的底(顶)部所在的水平线为x轴,对称轴为y轴,或直接选取最高(低)点为坐标原点建立直角坐标系来解决问题,再根据题意找出已知点的坐标,并求出抛物线解析式,最后根据图像信息解决实际问题. 题型03 图形最大面积问题利用二次函数解决面积最值的方法:求最大面积类问题可以利用二次函数的图像和性质进行解答,也就是把图形面积的最值问题转化为二次函数的最值问题,依据图形的面积公式列出函数解析式.【注意】在求解几何图形的最大面积时,应注意自变量的取值范围,一定要注意题目中隐含的每一个几何量的取值范围,一般有以下几种情况: 边长,周长,面积大于0,三角形中任意两边之和大于第三边. 题型04 图形运动问题利用二次函数解决运动型几何问题的方法:对于运动型几何问题中的函数应用问题,解题时应深入理解运动图形所在的条件与环境,用运动的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动过程中的不变量、不变关系和特殊关系,然后化“动态”为“静态”、化“变化”为“不变”,通过分析找出题中各图形的结合点,借助函数的性质予以解决.当图形(或某一事物)在运动的过程中某一量取到最大值或最小值时,其位置必定在一个特殊的位置,这是普遍规律.【典例1】(2025·四川内江·中考真题)2025年春节期间,我国国产动画电影《哪吒之魔童闹海》刷新了中国电影票房的新纪录,商家推出A、B两款“哪吒”文旅纪念品.已知购进A款200个,B款300个,需花费14000元;购进A款100个,B款200个,需花费8000元.(1)求A、B两款“哪吒”纪念品每个进价分别为多少元?(2)根据网上预约的情况,如果该商家计划用不超过12000元的资金购进A、B两款“哪吒”纪念品共400个,那么至少需要购进B款纪念品多少个?(3)在销售中,该商家发现每个A款纪念品售价60元时,可售出200个,售价每增加1元,销售量将减少5个.设每个A款纪念品售价元,W表示该商家销售A款纪念品的利润(单位:元),求W关于a的函数表达式,并求出W的最大值.【答案】(1)A款“哪吒”纪念品每个进价为40元,B款“哪吒”纪念品每个进价为20元;(2)至少需要购进B款纪念品200个(3),W的最大值为4500【分析】本题主要考查了二元一次方程组的实际应用,二次函数的实际应用,一元一次不等式的实际应用,正确理解题意列出方程组,函数关系式和不等式是解题的关键.(1)设A款“哪吒”纪念品每个进价为x元,B款“哪吒”纪念品每个进价为y元,根据购进A款200个,B款300个,需花费14000元;购进A款100个,B款200个,需花费8000元建立方程组求解即可;(2)设需要购进B款纪念品m个,则需要购进A款纪念品个,根据购买资金不超过12000元建立不等式求解即可;(3)根据题意可得每个A款纪念品的利润为元,销售量为个,据此列出W关于a的二次函数关系式,再利用二次函数的性质求出W的最大值即可.【详解】(1)解:设A款“哪吒”纪念品每个进价为x元,B款“哪吒”纪念品每个进价为y元,由题意得,,解得,答:A款“哪吒”纪念品每个进价为40元,B款“哪吒”纪念品每个进价为20元;(2)解:设需要购进B款纪念品m个,则需要购进A款纪念品个,由题意得,,解得,∴m的最小值为200,答:至少需要购进B款纪念品200个;(3)解:由题意得,,∵,∴当,即时,W最大,最大值为4500.【典例2】(2023·浙江温州·统考中考真题)一次足球训练中,小明从球门正前方的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?【答案】(1),球不能射进球门;(2)当时他应该带球向正后方移动1米射门【分析】(1)根据建立的平面直角三角坐标系设抛物线解析式为顶点式,代入A点坐标求出a的值即可得到函数表达式,再把代入函数解析式,求出函数值,与球门高度比较即可得到结论;(2)根据二次函数平移的规律,设出平移后的解析式,然后将点代入即可求解.【详解】(1)解:由题意得:抛物线的顶点坐标为,设抛物线解析式为,把点代入,得,解得,∴抛物线的函数表达式为,当时,,∴球不能射进球门;(2)设小明带球向正后方移动米,则移动后的抛物线为,把点代入得,解得(舍去),,∴当时他应该带球向正后方移动1米射门.【点睛】此题考查了二次函数的应用,待定系数法求函数解析式、二次函数图象的平移等知识,读懂题意,熟练掌握待定系数法是解题的关键.【典例3】(2025·内蒙古·中考真题)问题背景:综合与实践课上,老师让同学们设计一个家电装置图案,某小组设计的效果图如图所示.外形参数:如图1,装置整体图案为轴对称图形,外形由上方的抛物线,中间的矩形和下方的抛物线组成.抛物线的高度为,矩形的边,,抛物线的高度为.在装置内部安装矩形电子显示屏,点,在抛物线上,点,在抛物线上.问题解决:如图2,该小组以矩形的顶点为原点,以边所在的直线为轴,以边所在的直线为轴.建立平面直角坐标系.请结合外形参数,完成以下任务:(1)直接写出,,三点的坐标;(2)直接写出抛物线和的顶点坐标,并分别求出抛物线和的函数表达式;(3)为满足矩形电子显示屏的空间要求,需要边的长为,求此时边的长.【答案】(1),,(2)抛物线和的顶点坐标分别为,, 的表达式为;的表达式为;(3)【分析】(1)由矩形性质可得,,,,即可得出坐标;(2)由装置整体图案为轴对称图形,作出对称轴,分别交抛物线于,交抛物线于,交矩形于,,结合矩形和抛物线的对称性,可得直线是抛物线和的对称轴,,,由矩形中,抛物线的高度为,抛物线的高度为,直线是抛物线和的对称轴,即可得出抛物线和的顶点坐标分别为,,分别设抛物线和的表达式为,,分别将将和代入求解即可;(3)由装置整体图案为轴对称图形,得出,,证明轴,设,则,,则,求得,由抛物线对称性可得.【详解】(1)解:∵矩形的边,,∴,,,,∴,,;(2)解:∵装置整体图案为轴对称图形,如图,作出对称轴,分别交抛物线于,交抛物线于,交矩形于,,结合矩形和抛物线的对称性,可得直线是抛物线和的对称轴,,,∴四边形是矩形,∴,∵抛物线的高度为,抛物线的高度为,直线是抛物线和的对称轴,∴,,∴抛物线和的顶点坐标分别为,,分别设抛物线和的表达式为,,将代入,解得,则抛物线的表达式为;将代入,解得;则抛物线的表达式为;(3)解:∵装置整体图案为轴对称图形,∴,,∵轴,∴轴,∵是矩形,∴,∴轴,∴,设,∴,,∴,解得:或(在对称轴右侧,舍),∴,由抛物线对称性可得.【点睛】本题考查二次函数的图象与几何综合,矩形的性质,平面直角坐标系,待定系数法求二次函数的解析式,二次函数的图象与性质,熟练掌握相关性质是解题的关键.考点三 点的坐标的有关性质【典例1】(2023·内蒙古赤峰·统考中考真题)如图,抛物线与x轴交于点A,B,与y轴交于点C,点在抛物线上,点E在直线上,若,则点E的坐标是____________. 【答案】和【分析】先根据题意画出图形,先求出点坐标,当点在线段上时:是△DCE的外角,,而,所以此时,有,可求出所在直线的解析式,设点坐标,再根据两点距离公式,,得到关于的方程,求解的值,即可求出点坐标;当点在线段的延长线上时,根据题中条件,可以证明,得到为直角三角形,延长至,取,此时,,从而证明是要找的点,应为,为等腰直角三角形, 点和关于点对称,可以根据点坐标求出点坐标.【详解】解:根据点坐标,有所以点坐标 设所在直线解析式为,其过点、有,解得所在直线的解析式为:当点在线段上时,设而∴∴因为:,,有解得:,所以点的坐标为:当在的延长线上时,在中,,,∴∴如图延长至,取, 则有为等腰三角形,,∴又∵∴则为符合题意的点,∵∴的横坐标:,纵坐标为;综上E点的坐标为:或.故答案为:或.【点睛】本题考查了二次函数与一次函数综合应用,熟练掌握一次函数根二次函数的图象和性质,分情况找到点的位置,是求解此题的关键.【典例2】(2023·内蒙古赤峰·统考中考真题)如图,抛物线与x轴交于点A,B,与y轴交于点C,点在抛物线上,点E在直线上,若,则点E的坐标是____________. 【答案】和【分析】先根据题意画出图形,先求出点坐标,当点在线段上时:是△DCE的外角,,而,所以此时,有,可求出所在直线的解析式,设点坐标,再根据两点距离公式,,得到关于的方程,求解的值,即可求出点坐标;当点在线段的延长线上时,根据题中条件,可以证明,得到为直角三角形,延长至,取,此时,,从而证明是要找的点,应为,为等腰直角三角形, 点和关于点对称,可以根据点坐标求出点坐标.【详解】解:根据点坐标,有所以点坐标 设所在直线解析式为,其过点、有,解得所在直线的解析式为:当点在线段上时,设而∴∴因为:,,有解得:,所以点的坐标为:当在的延长线上时,在中,,,∴∴如图延长至,取, 则有为等腰三角形,,∴又∵∴则为符合题意的点,∵∴的横坐标:,纵坐标为;综上E点的坐标为:或.故答案为:或.【点睛】本题考查了二次函数与一次函数综合应用,熟练掌握一次函数根二次函数的图象和性质,分情况找到点的位置,是求解此题的关键.【典例3】(2023·河南·统考中考真题)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系. (1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1),;(2)选择吊球,使球的落地点到C点的距离更近【分析】(1)在一次函数上,令,可求得,再代入即可求得的值;(2)由题意可知,令,分别求得,,即可求得落地点到点的距离,即可判断谁更近.【详解】(1)解:在一次函数,令时,,∴,将代入中,可得:,解得:;(2)∵,,∴,选择扣球,则令,即:,解得:,即:落地点距离点距离为,∴落地点到C点的距离为,选择吊球,则令,即:,解得:(负值舍去),即:落地点距离点距离为,∴落地点到C点的距离为,∵,∴选择吊球,使球的落地点到C点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.专项训练·深度理解专项训练十四:二次函数的应用(时间:60分钟,总分100分)一、选择题(本题共10题,每题3分,共30分)1. 某种正方形合金板材的成本y(元)与它的面积成正比,设边长为xcm.当x=3时,y=8,那么当成本为72元时,边长为( )A.6cm B.12cm C.24cm D.36cm【解答】解:设y与x之间的函数关系式为y=kx2,由题意,得18=9k,解得:k=2,∴y=2x2,当y=72时,72=2x2,∴x=6.故选:A.2. 某烟花厂设计一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A.3s B.4s C.5s D.6s【解答】解:∵h=﹣t2+20t+1,∴h=﹣(t﹣4)2+41,∴当t=4秒时,礼炮达到最高点爆炸.故选:B.3. 某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(万元)与销售量x(辆)之间分别满足:y1=-x2+10x,y2=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润是( )A.30万元 B.40万元 C.45万元 D.46万元【解答】解:设在甲地销售x辆,则在乙地销售(15﹣x)辆,根据题意得出:W=y1+y2=﹣x2+10x+2(15﹣x)=﹣x2+8x+30,∴最大利润为:==46(万元),故选:D.4. ( 2025·甘肃)如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OM,喷头M向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x(x>0),则水流喷出的最大高度是( )A.3m B.2.75m C.2m D.1.75m【解答】解:y=﹣x2+2x(x﹣1)2+1(x﹣1)2,∵﹣1<0,∴当x=1时,y取最大值,最大值为,即2.75米,故选:B.5. 图2是图中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=(x-80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为( )A.16米 B.米 C.16米 D.米图1 图2【解答】解:∵AC⊥x轴,OA=10米,∴点C的横坐标为﹣10,当x=﹣10时,y=(x-80)2+16=(-10-80)2+16=﹣,∴C(﹣10,﹣),∴桥面离水面的高度AC为m.故选:B.6. 跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度(单位:)与水平距离(单位:)近似满足函数关系().下图记录了某运动员起跳后的与的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A. B. C. D.【答案】B【解析】设对称轴为,由(,)和(,)可知,,由(,)和(,)可知,,∴,故选B.7. (2025·山东·中考真题)在水分、养料等条件一定的情况下,某植物的生长速度(厘米/天)和光照强度(勒克斯)之间存在一定关系.在低光照强度范围()内,与近似成一次函数关系;在中高光照强度范围内,与近似成二次函数关系.其部分图象如图所示.根据图象,下列结论正确的是( ) A.当时,随的增大而减小 B.当时,有最大值C.当时, D.当时,【答案】B【分析】本题主要考查了二次函数图象的性质、二次函数与不等式等知识点,掌握数形结合思想是解题的关键.根据抛物线可直接判断A选项;根据抛物线以及相关数据可得抛物线的对称轴为,进而判定B选项;根据函数图象可判定C选项;根据二次函数的对称性可判定D选项.【详解】解:A.当时,随的增大先增大、后减小,即A选项错误,不符合题意;B.由函数图象可知:抛物线的对称轴为,即当时,有最大值,则B选项正确,符合题意;C.由函数图象可知:当时,,即C选项错误,不符合题意;D.当时,由图象知,对应的值有两个,即D选项错误,不符合题意.故选B.8. (2025·甘肃·中考真题)如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置,喷头M向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度与水平距离之间的关系式是,则水流喷出的最大高度是( )A. B. C. D.【答案】B【分析】本题考查了二次函数的实际应用,把函数解析式化为顶点式,由函数性质求最大值.解题的关键是从实际问题中抽象出二次函数模型,难度中等.【详解】解:,,当时,取最大值,最大值为,即2.75米,故选:B.9. 如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是( )A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:2【分析】求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.【解答】解:当y=7.5时,7.5=4x﹣x2,整理得x2﹣8x+15=0,解得,x1=3,x2=5,∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5侧面cm,A错误,符合题意;y=4x﹣x2=﹣(x﹣4)2+8,则抛物线的对称轴为x=4,∴当x>4时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,不符合题意;,解得,,,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.【点评】本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.10. (2025·黑龙江齐齐哈尔·中考真题)如图,在菱形中,,,动点从点出发沿边匀速运动,运动到点时停止,过点作的垂线,在点运动过程中,垂线扫过菱形(即阴影部分)的面积为,点运动的路程为.下列图象能反映与之间函数关系的是( )A.B.C.D.【答案】A【分析】分三种情况:点E在上时,点E在上且l与相交时,点E在上且l与相交时,分别计算出阴影部分面积的表达式,即可求解.【详解】解:当点E在上时,如图,,,,,,,此时图象为开口上的抛物线的一部分,排除C,D选项;当点E在上且l与相交时,作,如图,,,,,,,此时图象为直线一部分;当点E在上且l与相交时,如图,,,,,,,此时图象为开口下的抛物线的一部分,排除B选项;故选A.【点睛】本题考查菱形上的动点问题,解直角三角形,勾股定理,二次函数的图象和性质,一次函数的图象和性质等,求出不同阶段y与x的解析式是解题的关键.二、填空题(本题共6题,每题3分,共18分)11. (2025·甘肃平凉·中考真题)如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置,喷头M向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式是,则水流喷出的最大高度是 .【分析】本题考查了二次函数的实际应用,正确理解题意、将抛物线转化为顶点式是解题关键;将抛物线化为顶点式即可解决问题.【详解】解:∵,∴当时,;故答案为2.75m:.12. (2025·江苏连云港·中考真题)如图,小亮同学掷铅球时,铅球沿抛物线运行,其中是铅球离初始位置的水平距离,是铅球离地面的高度.若铅球抛出时离地面的高度为,则铅球掷出的水平距离为 .【答案】【分析】本题考查待定系数法求抛物线解析式,二次函数与轴的交点坐标,熟练掌握待定系数法和二次函数与一元二次方程的关系是解题的关键.由题得,代入,得出抛物线的解析式为,令,求解即可,【详解】解:由题意,,得,将代入,得:,解得:,∴,令,得,解得:,,∴为,故答案为:.13. (2024 泰安)如图,小明的父亲想用长为60米的栅栏,再借助房屋的外墙围成一个矩形的菜园.已知房屋外墙长40米,则可围成的菜园的最大面积是 450 平方米.【分析】依据题意,设垂直于墙的边长为x米,则平行于墙的边长为(60﹣2x)米,又墙长为40米,从而可得0<60﹣2x≤40,故10≤x<30,又菜园的面积=x(60﹣2x)=﹣2x2+60=﹣2(x﹣15)2+450,进而结合二次函数的性质即可判断得解.【解答】解:由题意,设垂直于墙的边长为x米,则平行于墙的边长为(60﹣2x)米,又墙长为40米,∴0<60﹣2x≤40.∴10≤x<30.又菜园的面积=x(60﹣2x)=﹣2x2+60=﹣2(x﹣15)2+450,∴当x=15时,可围成的菜园的最大面积是450,即垂直于墙的边长为15米时,可围成的菜园的最大面积是450平方米.故答案为:450.【点评】本题主要考查了二次函数的应用,解题时要熟练掌握并能灵活运用二次函数的性质是关键.14. 如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高 8 m时,水柱落点距O点4m.【考点】二次函数的应用..【专题】二次函数的应用;推理能力.【答案】8.【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出2.5a+b+1=0;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0,联立可求出a和b的值,设喷头高为h时,水柱落点距O点4m,则此时的解析式为y=ax2+bx+h,将(4,0)代入可求出h.【解答】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,当喷头高2.5m时,可设y=ax2+bx+2.5,将(2.5,0)代入解析式得出6.25a+2.5b+2.5=0,整理得2.5a+b+1=0①;喷头高4m时,可设y=ax2+bx+4;将(3,0)代入解析式得9a+3b+4=0②,联立可求出a,b,设喷头高为h时,水柱落点距O点4m,∴此时的解析式为yx2x+h,将(4,0)代入可得424+h=0,解得h=8.故答案为:8.【点评】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,直接利用二次函数的平移性质是解题关键.15. (2023·山东滨州·统考中考真题)要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心,水管长度应为____________.【答案】【分析】以池中心为原点,竖直安装的水管为y轴,与水管垂直的水平面为x轴建立直角坐标系,设抛物线的解析式为,将代入求得a值,则时得的y值即为水管的长.【详解】解:以池中心为原点,竖直安装的水管为y轴,与水管垂直的水平面为x轴建立直角坐标系.由于在距池中心的水平距离为时达到最高,高度为,则设抛物线的解析式为:,代入求得:.将值代入得到抛物线的解析式为:,令,则.故水管长度为.故答案为:.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,正确建立平面直角坐标系是解题的关键.16. (2023·吉林长春·统考中考真题)年5月8日,商业首航完成——中国民商业运营国产大飞机正式起步.时分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为米时,两条水柱在物线的顶点H处相遇,此时相遇点H距地面米,喷水口A、B距地面均为4米.若两辆消防车同时后退米,两条水柱的形状及喷水口、到地面的距离均保持不变,则此时两条水柱相遇点距地面__________米. 【答案】【分析】根据题意求出原来抛物线的解析式,从而求得平移后的抛物线解析式,再令求平移后的抛物线与轴的交点即可.【详解】解:由题意可知:、、,设抛物线解析式为:,将代入解析式,解得:,,消防车同时后退米,即抛物线向左(右)平移米,平移后的抛物线解析式为:,令,解得:,故答案为:.【点睛】本题考查了待定系数法求抛物线解析式、函数图像的平移及坐标轴的交点;解题的关键是求得移动前后抛物线的解析式.三、解答题(本题共7题,共52分)17. (6分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?【分析】(1)根据题目中的函数解析式,令y=15即可解答本题;(2)令y=0,代入题目中的函数解析式即可解答本题;(3)将题目中的函数解析式化为顶点式即可解答本题.【解答】解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x3=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.18. (6分)某商场购进了A,B两种商品,若销售10件A商品和20件B商品,则可获利280元;若销售20件A商品和30件B商品,则可获利480元.(1)求A,B两种商品每件的利润;(2)已知A商品的进价为24元/件,目前每星期可卖出200件A商品,市场调查反映:如调整A商品价格,每降价1元,每星期可多卖出20件,如何定价才能使A商品的利润最大?最大利润是多少?【考点】二次函数的应用;二元一次方程组的应用..【专题】二次函数的应用;应用意识.【答案】见试题解答内容【分析】(1)根据题意列出二元一次方程组解答即可;(2)根据“商品利润=单件利润×销售数量“,列出二次函数解析式,将其化成顶点式,再结合“售价=进价+利润“解答即可.【解答】解:(1)设A商品每件的利润为x元,B商品每件的利润为元,根据题意,得,解得:,答:A商品每件的利润为12元,B商品每件的利润为8元.(2)设降价a元利润为w元根据题意,得:w=(12﹣a)(200+20a),=2400+240a﹣200a﹣20a,=﹣20a2+40a+2400,=﹣20(a﹣1)2+2420.∵﹣20<0.∴当 a=1 时,w有最大值,最大值为2420,此时定价 24+12﹣1=35(元).答:定价为35元时,利润最大,最大为2420元.【点评】本题主要考查了二元一次方程组和二次函数的应用,读懂题意并能列出等量关系式是解答本题的关键.19. (6分)(2025·广东·中考真题)如图,某跨海钢箱梁悬索桥的主跨长,主塔高,主缆可视为抛物线,主缆垂度,主缆最低处距离桥面,桥面距离海平面约.请在示意图中建立合适的平面直角坐标系,并求该抛物线的表达式.【答案】该抛物线的表达式为【分析】本题考查待定系数法求二次函数表达式,先由题意,建立恰当的平面直角坐标系,从而得到、,设该抛物线的顶点式为,将代入解方程即可得到答案.根据题中示意图,建立恰当的平面直角坐标系,并设出抛物线表达式是解决问题的关键.【详解】解:建立平面直角坐标系,如图所示:则抛物线顶点坐标为,,即,设该抛物线的表达式为,将代入得,解得,该抛物线的表达式为.20. (8分)(2023·浙江台州·统考中考真题)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如下表:流水时间t/min 0 10 20 30 40水面高度h/cm(观察值) 30 29 28.1 27 25.8任务1 分别计算表中每隔10min水面高度观察值的变化量.【建立模型】小组讨论发现:“,”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系. 任务2 利用时,;时,这两组数据求水面高度h与流水时间t的函数解析式.【反思优化】经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差.小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.任务3 (1)计算任务2得到的函数解析式的w值.(2)请确定经过的一次函数解析式,使得w的值最小.【设计刻度】得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4 请你简要写出时间刻度的设计方案.【答案】任务1:见解析;任务2:;任务3:(1),(2);任务4:见解析【分析】任务1:根据表格每隔10min水面高度数据计算即可;任务2:根据每隔10min水面高度观察值的变化量大约相等,得出水面高度h与流水时间t的是一次函数关系,由待定系数法求解;任务3:(1)先求出对应时间的水面高度,再按要求求w值;(2)设,然后根据表格中数据求出此时w的值是关于k的二次函数解析式;由此求出w的值最小时k值即可;任务4:根据高度随时间变化规律,以相同时间刻画不同高度即可,类似如数轴三要素,有原点、正方向与单位长度.最大量程约为294min可以代替单位长度要素.【详解】解:任务1:变化量分别为,;;;;任务2:设,∵时,,时,;∴∴水面高度h与流水时间t的函数解析式为.任务3:(1)当时,,当时,,当时,,当时,,当时,,∴.(2)设,则.当时,w最小.∴优化后的函数解析式为.任务4:时间刻度方案要点:①时间刻度的0刻度在水位最高处;②刻度从上向下均匀变大;③每0.102cm表示1min(1cm表示时间约为9.8min).【点睛】本题主要考查一次函数和二次函数的应用、方差的计算,熟练掌握待定系数法求解析式及一次函数的函数值、二次函数的最值是解题的关键.21. (8分)(2025·四川达州·中考真题)为弘扬达州地方文化,让更多游客了解巴人故里,某文旅公司推出多款文创产品.已知某款巴小虎吉祥物的成本价是30元,当售价为40元时,每天可以售出60件,经调查发现,售价每降价1元,每天可以多售出10件.(1)设该款巴小虎吉祥物降价x元,则每天售出的数量是_______件;(2)为让利于游客,该款巴小虎吉祥物应该降价多少元,文旅公司每天的利润是630元;(3)文旅公司每天售卖该款巴小虎吉祥物的利润为W元,当售价为多少元时,每天的利润最大?最大利润是多少?【答案】(1)(2)3元(3)售价为38元时,每天的利润最大,最大利润是640元【分析】本题考查了一元二次方程的应用和二次函数的应用,正确理解题意、列出方程与函数关系式是解题的关键;(1)根据原来每天售出的60件,再加上多售出的件数即可得到答案;(2)设该款巴小虎吉祥物降价x元,根据每件的利润×销售数量=销售利润即可列出方程,解方程即可得解;(3)设该款巴小虎吉祥物降价x元,根据每件的利润×销售数量=销售利润即可列出二次函数关系式,再根据二次函数的性质解答即可.【详解】(1)解:设该款巴小虎吉祥物降价x元,则每天售出的数量是件;故答案为:;(2)解:设该款巴小虎吉祥物降价x元,根据题意可得:,整理可得:,解得:,由于要让利于游客,舍去,∴该款巴小虎吉祥物降价3元时文旅公司每天的利润是630元.(3)解:设该款巴小虎吉祥物降价x元,则,∵,∴当时,取最大值为640元,此时销售价为38元,答:售价为38元时,每天的利润最大,最大利润是640元.22. (8分)(2025·山西·中考真题)综合与实践问题情境:青蛙腾空阶段的运动路线可看作抛物线.我国某科研团队根据青蛙的生物特征和运动机理设计出了仿青蛙机器人,其起跳后的运动路线与实际情况中青蛙腾空阶段的运动路线相吻合.实验数据:仿青蛙机器人从水平地面起跳,并落在水平地面上,其运动路线的最高点距地面,起跳点与落地点的距离为.数学建模:如图,将仿青蛙机器人的运动路线抽象为抛物线,其顶点为N,对称轴为直线l,仿青蛙机器人在水平地面上的起跳点为O,落地点为M.以O为原点,所在直线为x轴,过点O与所在水平地面垂直的直线为y轴,建立平面直角坐标系.(1)请直接写出顶点N的坐标,并求该抛物线的函数表达式;问题解决:已知仿青蛙机器人起跳后的运动路线形状保持不变,即抛物线的形状不变.(2)如图1,若仿青蛙机器人从点O正上方的点P处起跳,落地点为Q,点P的坐标为,点Q在x轴的正半轴上.求起跳点P与落地点Q的水平距离的长;(3)实验表明:仿青蛙机器人在跃过障碍物时,与障碍物上表面的每个点在竖直方向上的距离不少于,才能安全通过.如图,水平地面上有一个障碍物,其纵切面为四边形,其中,.仿青蛙机器人从距离左侧处的地面起跳,发现不能安全通过该障碍物.若团队人员在起跳处放置一个平台,仿青蛙机器人从平台上起跳,则刚好安全通过该障碍物.请直接写出该平台的高度(平台的大小忽略不计,障碍物的纵切面与仿青蛙机器人的运动路线在同一竖直平面内).【答案】(1),;(2)起跳点P与落地点Q的水平距离的长为;(3)【分析】本题考查二次函数的实际应用,读懂题意,正确的列出函数关系式,是解题的关键:(1)根据起跳点与落地点的距离为,得到对称轴为直线,根据运动路线的最高点距地面,得到顶点纵坐标为,写出顶点坐标,列出顶点式,把代入,求出函数解析式即可;(2)根据抛物线的形状不变,利用平移思想,写出新的函数解析式,令,求出的值,进而求出的长即可;(3)设该平台的高度为,根据题意,得到新的抛物线的解析式为:,根据仿青蛙机器人从平台上起跳,则刚好安全通过该障碍物,得到抛物线过点,代入求解即可;【详解】解:(1)由题意,得:抛物线的对称轴为直线,顶点纵坐标为,∴顶点坐标为,设抛物线的函数解析式为:,∵图象过原点,∴,解:,∴;(2)∵抛物线的形状不变,点,故第二次的函数图象可以看作由(1)的抛物线向上平移75个单位长度,得到的,∴新的抛物线的解析式为:,当时,,解得:,(舍去);故起跳点P与落地点Q的水平距离的长为;(3)设该平台的高度为,由题意,设新的函数解析式为:,∵,仿青蛙机器人从距离左侧处的地面起跳,由题意,仿青蛙机器人经过正上方处,即抛物线经过点,即:,∴把代入,得:,解得:;故设该平台的高度为.23. (10分)2025·广西·中考真题)综合与实践树人中学组织一次“爱心义卖”活动.九(5)班分配到了一块矩形义卖区和一把遮阳伞,遮阳伞在地面上的投影是一个平行四边形(如图1)初始时,矩形义卖区与遮阳伞投影的平面图如图2所示,在上,,,,,,由于场地限制,参加义卖的同学只能左右平移遮阳伞.在移动过程中,也随之移动(始终在边所在直线上),且形状大小保持不变,但落在义卖区内的部分(遮阳区)会呈现不同的形状.如图3为移动到落在上的情形.【问题提出】西西同学打算用数学方法,确定遮阳区面积最大时的位置.设遮阳区的面积为,从初始时向右移动的距离为.【直观感知】(1)从初始起右移至图3情形的过程中,随的增大如何变化?【初步探究】(2)求图3情形的与的值;【深入研究】(3)从图3情形起右移至与重合,求该过程中关于的解析式;【问题解决】(4)当遮阳区面积最大时,向右移动了多少?(直接写出结果)【答案】(1)随的增大而增大;(2),;(3);(4)【分析】(1)根据矩形的性质得,根据平行四边形的面积公式得,然后分别求出当时,当时,关于的解析式,即可得出结论;(2)根据(1)的结论可得答案;(3)当时,如图,设向右移动后得到,设交于点,交于点,交于点,则,,此时遮阳区的面积为六边形的面积,推出,,得,,再根据即可得出结论;(4)分别确定:当时,当时,当时,各个范围内的最大值,即可得出结论.【详解】解:(1)∵四边形是矩形,四边形是平行四边形,,,,在边所在直线上,∴,,,又∵如图2,在上,,,∴,,当时,如图,设交于点,交于点,则,此时遮阳区的面积为的面积,∵,∴,,∴,∴,∴,∴当时,随的增大而增大,的值从增大到;当时,如图,设交于点,则,,,此时遮阳区的面积为四边形的面积,∵,∴四边形为梯形,∴,∴当时,随的增大而增大,的值从增大到;综上所述,从初始起右移至图3情形的过程中,随的增大而增大;(2)如图3,此时点落在上,则,由(1)知:当时,;∴图3情形时,,;(3)当时,如图,设向右移动后得到,设交于点,交于点,交于点,则,,此时遮阳区的面积为六边形的面积,∴,,,∴,,∴,,∴,,∴,∴从图3情形起右移至与重合,该过程中关于的解析式为;(4)当时,,当时,的最大值为:;当时,,当时,的最大值为:;当时,,∵∴当时,的最大值为:,综上所述,当时,取得最大值,最大值为,∴当遮阳区面积最大时,向右移动了.【点睛】本题考查平移的性质,矩形的性质,平行四边形的性质,锐角三角函数的定义,列函数关系式,二次函数的最值,等积变换等知识点,利用分类讨论的思想及数形结合的思想解决问题是解题的关键.21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台第14讲 二次函数的应用考点展示·课标透视中考考点 新课标要求二次函数的实际应用-图形面积问题 通过对实际问题的分析,体会二次函数的意义;能解决相应的实际问题.二次函数的实际应用-利润最值问题二次函数的实际应用-其他问题知识导航·学法指引分类研究·深度理解考点一 二次函数的应用1. 用二次函数解决实际问题的一般步骤:1)审:仔细审题,理清题意;2)设:找出题中的变量和常量,分析它们之间的关系,与图形相关的问题要结合图形具体分析,设出适当的未知数;3)列:用二次函数表示出变量和常量之间的关系,建立二次函数模型,写出二次函数的解析式;4)解:依据已知条件,借助二次函数的解析式、图像和性质等求解实际问题;5)检:检验结果,进行合理取舍,得出符合实际意义的结论.【注意】二次函数在实际问题中的应用通常是在一定的取值范围内,一定要注意是否包含顶点坐标,如果顶点坐标不在取值范围内,应按照对称轴一侧的增减性探讨问题结论.2. 利用二次函数解决实际问题的常见类型常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等,对此类问题要正确地建立模型,选择合理的位置建立平面直角坐标系是解决此类问题的关键,然后用待定系数法求出函数表达式,利用函数性质解决问题.【典例1】一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?【典例2】(2025·新疆·中考真题)天山胜利隧道预计于2025年建成通车,它将成为世界上最长的高速公路隧道,能大大提升区域交通效率,促进经济发展.如图是隧道截面图,其轮廓可近似看作是抛物线的一部分.若隧道底部宽12米,高8米,按照如图所示的方式建立平面直角坐标系.(1)求抛物线的函数解析式;(2)该隧道设计为单向双车道通行,车辆顶部在竖直方向上与隧道的空隙不少于0.5米,当两辆车在隧道内并排行驶时,需沿中心线两侧行驶,且两车至少间隔2米(中心线宽度不计).若宽3米,高3.5米的两辆车并排行驶,能否安全通过?请说明理由.【典例3】(2025·贵州·中考真题)用石块打水漂是一项有趣的活动.抛掷后的石块与平静的水面接触.石块会在空中近似的形成一组抛物线的运动路径.如图①,小星站在河边的安全位置用一个石块打水漂,石块在空中飞行的高度y与水平距离之间的关系如图②所示.石块第一次与水面接触于点,运动路径近似为抛物线,且,石块在水面上弹起后第二次与水面接触于点,运动路径近似为抛物线,且.(小星所在地面、水面在同一平面内,且石块形状大小、空气阻力等因素忽略不计)(1)如图②,当时,若点坐标为,求抛物线的表达式;(2)在(1)的条件下,若,在水面上有一个截面宽,高的矩形的障碍物,点的坐标为,判断此时石块沿抛物线运动时是否能越过障碍物?请说明理由;(3)小星在抛掷石块时,若的顶点需在一个正方形区域内(包括边界),且点在和之间(包括这两点),其中,求的取值范围.(在抛掷过程中正方形与拋物线在同一平面内)考点二 二次函数考题类型研究 题型01 最大利润问题利用二次函数解决利润最值的方法:利润问题主要涉及两个等量关系:利润=售价-进价,总利润=单件商品的利润x销售量,在解答此类问题时,应建立二次函数模型,转化为函数的最值问题,然后列出相应的函数解析式,从而解决问题. 题型02 拱桥问题利用二次函数解决拱桥/隧道/拱门类问题的方法: 先建立适当的平面直角坐标系,一般选择抛物线形建筑物的底(顶)部所在的水平线为x轴,对称轴为y轴,或直接选取最高(低)点为坐标原点建立直角坐标系来解决问题,再根据题意找出已知点的坐标,并求出抛物线解析式,最后根据图像信息解决实际问题. 题型03 图形最大面积问题利用二次函数解决面积最值的方法:求最大面积类问题可以利用二次函数的图像和性质进行解答,也就是把图形面积的最值问题转化为二次函数的最值问题,依据图形的面积公式列出函数解析式.【注意】在求解几何图形的最大面积时,应注意自变量的取值范围,一定要注意题目中隐含的每一个几何量的取值范围,一般有以下几种情况: 边长,周长,面积大于0,三角形中任意两边之和大于第三边. 题型04 图形运动问题利用二次函数解决运动型几何问题的方法:对于运动型几何问题中的函数应用问题,解题时应深入理解运动图形所在的条件与环境,用运动的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动过程中的不变量、不变关系和特殊关系,然后化“动态”为“静态”、化“变化”为“不变”,通过分析找出题中各图形的结合点,借助函数的性质予以解决.当图形(或某一事物)在运动的过程中某一量取到最大值或最小值时,其位置必定在一个特殊的位置,这是普遍规律.【典例1】(2025·四川内江·中考真题)2025年春节期间,我国国产动画电影《哪吒之魔童闹海》刷新了中国电影票房的新纪录,商家推出A、B两款“哪吒”文旅纪念品.已知购进A款200个,B款300个,需花费14000元;购进A款100个,B款200个,需花费8000元.(1)求A、B两款“哪吒”纪念品每个进价分别为多少元?(2)根据网上预约的情况,如果该商家计划用不超过12000元的资金购进A、B两款“哪吒”纪念品共400个,那么至少需要购进B款纪念品多少个?(3)在销售中,该商家发现每个A款纪念品售价60元时,可售出200个,售价每增加1元,销售量将减少5个.设每个A款纪念品售价元,W表示该商家销售A款纪念品的利润(单位:元),求W关于a的函数表达式,并求出W的最大值.【典例2】(2023·浙江温州·统考中考真题)一次足球训练中,小明从球门正前方的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为时,球达到最高点,此时球离地面.已知球门高为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素).(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.25m处?【典例3】(2025·内蒙古·中考真题)问题背景:综合与实践课上,老师让同学们设计一个家电装置图案,某小组设计的效果图如图所示.外形参数:如图1,装置整体图案为轴对称图形,外形由上方的抛物线,中间的矩形和下方的抛物线组成.抛物线的高度为,矩形的边,,抛物线的高度为.在装置内部安装矩形电子显示屏,点,在抛物线上,点,在抛物线上.问题解决:如图2,该小组以矩形的顶点为原点,以边所在的直线为轴,以边所在的直线为轴.建立平面直角坐标系.请结合外形参数,完成以下任务:(1)直接写出,,三点的坐标;(2)直接写出抛物线和的顶点坐标,并分别求出抛物线和的函数表达式;(3)为满足矩形电子显示屏的空间要求,需要边的长为,求此时边的长.考点三 点的坐标的有关性质【典例1】(2023·内蒙古赤峰·统考中考真题)如图,抛物线与x轴交于点A,B,与y轴交于点C,点在抛物线上,点E在直线上,若,则点E的坐标是____________. 【典例2】(2023·内蒙古赤峰·统考中考真题)如图,抛物线与x轴交于点A,B,与y轴交于点C,点在抛物线上,点E在直线上,若,则点E的坐标是____________. 【典例3】(2023·河南·统考中考真题)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系. (1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.专项训练·深度理解专项训练十四:二次函数的应用(时间:60分钟,总分100分)一、选择题(本题共10题,每题3分,共30分)1. 某种正方形合金板材的成本y(元)与它的面积成正比,设边长为xcm.当x=3时,y=8,那么当成本为72元时,边长为( )A.6cm B.12cm C.24cm D.36cm2. 某烟花厂设计一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A.3s B.4s C.5s D.6s3. 某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(万元)与销售量x(辆)之间分别满足:y1=-x2+10x,y2=2x,若该公司在甲、乙两地共销售15辆该品牌的汽车,则能获得的最大利润是( )A.30万元 B.40万元 C.45万元 D.46万元4. ( 2025·甘肃)如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OM,喷头M向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=﹣x2+2x(x>0),则水流喷出的最大高度是( )A.3m B.2.75m C.2m D.1.75m5. 图2是图中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=(x-80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为( )A.16米 B.米 C.16米 D.米图1 图26. 跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度(单位:)与水平距离(单位:)近似满足函数关系().下图记录了某运动员起跳后的与的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A. B. C. D.7. (2025·山东·中考真题)在水分、养料等条件一定的情况下,某植物的生长速度(厘米/天)和光照强度(勒克斯)之间存在一定关系.在低光照强度范围()内,与近似成一次函数关系;在中高光照强度范围内,与近似成二次函数关系.其部分图象如图所示.根据图象,下列结论正确的是( ) A.当时,随的增大而减小 B.当时,有最大值C.当时, D.当时,8. (2025·甘肃·中考真题)如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置,喷头M向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度与水平距离之间的关系式是,则水流喷出的最大高度是( )A. B. C. D.9. 如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣x2刻画,斜坡可以用一次函数y=x刻画,下列结论错误的是( )A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:210. (2025·黑龙江齐齐哈尔·中考真题)如图,在菱形中,,,动点从点出发沿边匀速运动,运动到点时停止,过点作的垂线,在点运动过程中,垂线扫过菱形(即阴影部分)的面积为,点运动的路程为.下列图象能反映与之间函数关系的是( )A.B.C.D.二、填空题(本题共6题,每题3分,共18分)11. (2025·甘肃平凉·中考真题)如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置,喷头M向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,按如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式是,则水流喷出的最大高度是 .12. (2025·江苏连云港·中考真题)如图,小亮同学掷铅球时,铅球沿抛物线运行,其中是铅球离初始位置的水平距离,是铅球离地面的高度.若铅球抛出时离地面的高度为,则铅球掷出的水平距离为 .13. (2024 泰安)如图,小明的父亲想用长为60米的栅栏,再借助房屋的外墙围成一个矩形的菜园.已知房屋外墙长40米,则可围成的菜园的最大面积是 平方米.14. 如图,水池中心点O处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距O点2.5m;喷头高4m时,水柱落点距O点3m.那么喷头高 m时,水柱落点距O点4m.15. (2023·山东滨州·统考中考真题)要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心,水管长度应为____________.16. (2023·吉林长春·统考中考真题)年5月8日,商业首航完成——中国民商业运营国产大飞机正式起步.时分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为米时,两条水柱在物线的顶点H处相遇,此时相遇点H距地面米,喷水口A、B距地面均为4米.若两辆消防车同时后退米,两条水柱的形状及喷水口、到地面的距离均保持不变,则此时两条水柱相遇点距地面__________米. 三、解答题(本题共7题,共52分)17. (6分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?18. (6分)某商场购进了A,B两种商品,若销售10件A商品和20件B商品,则可获利280元;若销售20件A商品和30件B商品,则可获利480元.(1)求A,B两种商品每件的利润;(2)已知A商品的进价为24元/件,目前每星期可卖出200件A商品,市场调查反映:如调整A商品价格,每降价1元,每星期可多卖出20件,如何定价才能使A商品的利润最大?最大利润是多少?19. (6分)(2025·广东·中考真题)如图,某跨海钢箱梁悬索桥的主跨长,主塔高,主缆可视为抛物线,主缆垂度,主缆最低处距离桥面,桥面距离海平面约.请在示意图中建立合适的平面直角坐标系,并求该抛物线的表达式.20. (8分)(2023·浙江台州·统考中考真题)【问题背景】“刻漏”是我国古代的一种利用水流计时的工具.综合实践小组准备用甲、乙两个透明的竖直放置的容器和一根带节流阀(控制水的流速大小)的软管制作简易计时装置.【实验操作】综合实践小组设计了如下的实验:先在甲容器里加满水,此时水面高度为30cm,开始放水后每隔10min观察一次甲容器中的水面高度,获得的数据如下表:流水时间t/min 0 10 20 30 40水面高度h/cm(观察值) 30 29 28.1 27 25.8任务1 分别计算表中每隔10min水面高度观察值的变化量.【建立模型】小组讨论发现:“,”是初始状态下的准确数据,水面高度值的变化不均匀,但可以用一次函数近似地刻画水面高度h与流水时间t的关系. 任务2 利用时,;时,这两组数据求水面高度h与流水时间t的函数解析式.【反思优化】经检验,发现有两组表中观察值不满足任务2中求出的函数解析式,存在偏差.小组决定优化函数解析式,减少偏差.通过查阅资料后知道:t为表中数据时,根据解析式求出所对应的函数值,计算这些函数值与对应h的观察值之差的平方和,记为w;w越小,偏差越小.任务3 (1)计算任务2得到的函数解析式的w值.(2)请确定经过的一次函数解析式,使得w的值最小.【设计刻度】得到优化的函数解析式后,综合实践小组决定在甲容器外壁设计刻度,通过刻度直接读取时间.任务4 请你简要写出时间刻度的设计方案.21. (8分)(2025·四川达州·中考真题)为弘扬达州地方文化,让更多游客了解巴人故里,某文旅公司推出多款文创产品.已知某款巴小虎吉祥物的成本价是30元,当售价为40元时,每天可以售出60件,经调查发现,售价每降价1元,每天可以多售出10件.(1)设该款巴小虎吉祥物降价x元,则每天售出的数量是_______件;(2)为让利于游客,该款巴小虎吉祥物应该降价多少元,文旅公司每天的利润是630元;(3)文旅公司每天售卖该款巴小虎吉祥物的利润为W元,当售价为多少元时,每天的利润最大?最大利润是多少?22. (8分)(2025·山西·中考真题)综合与实践问题情境:青蛙腾空阶段的运动路线可看作抛物线.我国某科研团队根据青蛙的生物特征和运动机理设计出了仿青蛙机器人,其起跳后的运动路线与实际情况中青蛙腾空阶段的运动路线相吻合.实验数据:仿青蛙机器人从水平地面起跳,并落在水平地面上,其运动路线的最高点距地面,起跳点与落地点的距离为.数学建模:如图,将仿青蛙机器人的运动路线抽象为抛物线,其顶点为N,对称轴为直线l,仿青蛙机器人在水平地面上的起跳点为O,落地点为M.以O为原点,所在直线为x轴,过点O与所在水平地面垂直的直线为y轴,建立平面直角坐标系.(1)请直接写出顶点N的坐标,并求该抛物线的函数表达式;问题解决:已知仿青蛙机器人起跳后的运动路线形状保持不变,即抛物线的形状不变.(2)如图1,若仿青蛙机器人从点O正上方的点P处起跳,落地点为Q,点P的坐标为,点Q在x轴的正半轴上.求起跳点P与落地点Q的水平距离的长;(3)实验表明:仿青蛙机器人在跃过障碍物时,与障碍物上表面的每个点在竖直方向上的距离不少于,才能安全通过.如图,水平地面上有一个障碍物,其纵切面为四边形,其中,.仿青蛙机器人从距离左侧处的地面起跳,发现不能安全通过该障碍物.若团队人员在起跳处放置一个平台,仿青蛙机器人从平台上起跳,则刚好安全通过该障碍物.请直接写出该平台的高度(平台的大小忽略不计,障碍物的纵切面与仿青蛙机器人的运动路线在同一竖直平面内).23. (10分)2025·广西·中考真题)综合与实践树人中学组织一次“爱心义卖”活动.九(5)班分配到了一块矩形义卖区和一把遮阳伞,遮阳伞在地面上的投影是一个平行四边形(如图1)初始时,矩形义卖区与遮阳伞投影的平面图如图2所示,在上,,,,,,由于场地限制,参加义卖的同学只能左右平移遮阳伞.在移动过程中,也随之移动(始终在边所在直线上),且形状大小保持不变,但落在义卖区内的部分(遮阳区)会呈现不同的形状.如图3为移动到落在上的情形.【问题提出】西西同学打算用数学方法,确定遮阳区面积最大时的位置.设遮阳区的面积为,从初始时向右移动的距离为.【直观感知】(1)从初始起右移至图3情形的过程中,随的增大如何变化?【初步探究】(2)求图3情形的与的值;【深入研究】(3)从图3情形起右移至与重合,求该过程中关于的解析式;【问题解决】(4)当遮阳区面积最大时,向右移动了多少?(直接写出结果)21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 浙教版备战2026年中考一轮复习专项训练50讲第14讲二次函数的应用(原卷).doc 浙教版备战2026年中考一轮复习专项训练50讲第14讲二次函数的应用(教师卷).doc