资源简介 (共66张PPT)人教版2019高一数学(选修一)第二章 直线和圆的方程2.1.1 直线的倾斜角与斜率学习目标1.理解空间向量的概念.(难点)2.掌握空间向量的加法、减法、数乘等线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点)情景导入交通工程上一般用“坡度”来描述一段道路对于水平方向的倾斜程度,如图,一辆汽车沿某条道路从A点前进到B点,在水平方向前进的距离为AD,竖直方向上升的高度为DB(如果是下降,则DB的值为负实数),则坡度 .k>0表示上坡,k<0表示下坡,为了实际应用与安全,在道路铺设时常要规划坡度的大小.那么坡度是如何来刻画道路的倾斜程度的呢 1.倾斜角与斜率新知探究思考与探究:确定一条直线位置的几何要素是什么 对于平面直角坐标系中的一条直线,如何利用坐标系确定它的位置 xyOl两点确定一条直线为直线的方向向量结论:一点和一方向确定一条直线点能确定直线吗 下面三条直线过了同一点 ,他们之间区别是什么?o.在平面直角坐标系中,我们规定水平直线的方向向右,其他直线向上的方向为这条直线的方向.因此,这些直线的区别是它们的方向不同.我们可以用什么几何量来描述直线的倾斜程度呢?1、定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角 叫做直线的倾斜角。规定:1.当直线与x轴平行或重合时,2.当直线与x轴垂直时,概念归纳确定直线的方法有两种:①直线上两点②直线上一点和直线的倾斜角oxyoxyoxyoxy(1)(2)(3)(4)下列图中标出的直线的倾斜角对不对?练一练poyxypoxpoyxpoyx按倾斜角分类,直线可分为以下几种情况:下面我们进一步研究刻画直线倾斜程度的方法.设 (其中 )是直线 上的两点.由两点确定一条直线可知,直线 由点 唯一确定.所以,可以推断,直线 的倾斜角一定与 两点的坐标有内在联系.2.直线的斜率新知探究在平面直角坐标系中,设直线 的倾斜角为 ,已知直线 经过 , 与 的坐标有什么关系 如图,向量 ,且直线 的倾斜角为 .由正切函数的定义,有 思考探究在平面直角坐标系中,设直线 的倾斜角为 .类似地,如果直线经过 , 与 的坐标又有什么关系 如图, .平移向量到 ,则点 的坐标为且直线 的倾斜角也是 ,由正切函数的定义,有思考探究一般地,如图,当向量 的方向向上时, ,平移向量 到 ,则点 的坐标为 ,且直线 的倾斜角也是 ,由正切函数的定义,有能不能构造一个直角三角形去求?当α为锐角时,倾斜角是锐角时当α为钝角时,倾斜角是钝角时经过两点的直线的斜率公式:(1) 当x1=x2时,公式不适用,此时α=900(2) 直线的斜率可以通过直线上任意两点的坐标来表示注意:(3) 与两点的顺序无关当直线 与 轴平行或重合时,上述式子还成立吗 为什么 当直线 与 轴平行或重合时,符合思考探究概念归纳综上:直线 的倾斜角 与直线 上的两点的坐标有如下关系:我们把一条直线的倾斜角 的正切值叫做这条直线的斜率.斜率常用小写字母 表示,即倾斜角是 的直线没有斜率,倾斜角不是 的直线都有斜率.日常生活中常用“坡度”表示倾斜面的倾斜程度:前进量升高量当直线的倾斜角为锐角时,直线的斜率与坡度是类似的由图知,当 时, ,且 随 的增大而增大.当 时, ,且 随 的增大而增大当 时,当 时, 不存在O思考探究由正切函数的单调性,直线的倾斜角不同,其斜率也不同. o 由因此,我们也可以用斜率表示倾斜角不等于 的直线相对于 轴的倾斜程度,进而表示直线的方向.概念归纳直线 的方向向量 的坐标为 ,当直线 与 轴不垂直时,即 ,此时向量 ,也是直线 的方向向量,且它的坐标为 ,即 ,其中 是直线 的斜率,直线的方向向量与斜率 有什么关系?xyOl结论1 若直线 的斜率为 ,它的一个方向向量的坐标为 ,则结论2 若直线 的斜率为 ,则它的一个方向向量的坐标为概念归纳如下图,已知 ,求直线 的斜率,并判断这些直线的倾斜角是锐角还是钝角.锐角钝角锐角课本例题 (1)下列说法中,正确的是 ( )A.直线的倾斜角为α,则此直线的斜率为tan αB.直线的斜率为tan α,则此直线的倾斜角为αC.若直线的倾斜角为α,则sin α>0D.任意直线都有倾斜角,但它不一定有斜率探究一:对直线的倾斜角、斜率的理解典例剖析D(2)设直线l过坐标原点,它的倾斜角为α,如果将直线l绕坐标原点按逆时针方向旋转45°,得到直线l1,那么l1的倾斜角为 ( )A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135°典例剖析D【解析】(1)对于A,当α=90°时,直线的斜率不存在,故不正确;对于B,虽然直线的斜率为tan α,但只有当0°≤α<180°时,α才是此直线的倾斜角,故不正确;对于C,当直线平行于x轴时,α=0°,sin α=0,故C不正确.(2)根据题意,画出图形,如图所示.因为0°≤α<180°,显然A,B,C未分类讨论,均不全面,不合题意.通过画图可知:当0°≤α<135°时,倾斜角为α+45°,当135°≤α<180°时,倾斜角为α-135°.求直线倾斜角的方法及关注点(1)定义法:根据题意画出图形,结合倾斜角的定义找倾斜角.(2)关注点:结合图形求角时,应注意平面几何知识的应用,如三角形内角和定理及其有关推论.1.已知直线l过原点,倾斜角为40°,将直线l顺时针旋转45°得到直线l1,求直线l1的倾斜角.解:如图,图中角α即为直线l1的倾斜角,则α=180°-(45°-40°)=180°-5°=175°.练一练3.已知A(3,3),B(-4,2),C(0,-2).(1)求直线AB和AC的斜率;(2)点D在线段BC上(包括端点)移动时,求直线AD的斜率的变化范围.素养点睛:考查直观想象的核心素养.探究二 有关直线斜率的运算典例剖析3.已知A(3,3),B(-4,2),C(0,-2).点D在线段AB上(包括端点)移动时,求直线CD的斜率的变化范围.1.利用斜率公式求直线的斜率应注意的事项(1)运用公式的前提条件是“x1≠x2”,即直线不与x轴垂直,因为当直线与x轴垂直时,斜率是不存在的.(2)斜率公式与两点P1,P2的先后顺序无关,也就是说公式中的x1与x2,y1与y2可以同时交换位置.2.由坐标求直线斜率的策略对于用坐标表示的斜率,其大小与两点的先后顺序无关,当x1=x2,y1≠y2时,直线的倾斜角α=90°,没有斜率,这常常是分类讨论的依据,斜率公式是“数”与“形”结合的纽带.概念归纳练一练 若点A(1,1),B(3,5),C(a,7)三点共线,求a的值.探究三 斜率与倾斜角的综合应用典例剖析 若点A(1,4),B(3,5),C(a,7)三点共线,求a的值.练一练解:因为A(1,1),B(3,5),C(4,7),由斜率公式得kAB=2,kAC=2,所以kAB=kAC.因为直线AB与直线AC的倾斜角相等且过同一点A,所以直线AB与直线AC为同一条直线.故A,B,C三点在同一条直线上. 若点A(1,1),B(3,5),C(4,7)三点共线,试证明A,B,C三点在同一条直线上.练一练用斜率公式解决三点共线问题的方法从三点中任取两点,求其斜率若斜率存在,且相等,且两直线有公共点若斜率不存在,且两直线有公共点三点共线概念归纳3.已知某直线l的倾斜角α=45°,又P1(2,y1),P2(x2,5),P3(3,1)是此直线上的三点,求x2,y1的值.练一练1.若直线l经过A(2,1),B(1,-m2)(m∈R)两点,则直线l的倾斜角α的取值范围是( )C随堂练随堂练A3.过点P(-2,m),Q(m,4)的直线的斜率为1,那么m的值为( )A.1或4 B.4C.1或3 D.1随堂练D随堂练60°课本练习课本练习课本练习课本练习课本练习 如图,已知点A(-2,3),B(3,2),直线l过点P(0,-2),且与线段AB有公共点,求直线l的斜率k的变化范围.易错警示 利用直线倾斜角与斜率的关系求解问题错因分析错解分析:错误的根本原因是对斜率k与倾斜角间的变化关系理解得不准确.错因分析防范措施:正确理解直线倾斜角与斜率的变化求斜率范围问题时,一定要注意对直线倾斜角与斜率的关系的正确理解并灵活应用.如本例直线的倾斜角是从一个锐角逐渐增大到一个钝角,所以直线的斜率应是两个小范围的并集.错因分析分层练习-基础1.若直线过点(1,2),(2,2+),则此直线的倾斜角是( )A.30° B.45°C.60° D.90°2.(2021年合肥月考)若直线l经过原点和点A(-2,-2),则它的斜率为( )A.-1 B.1C.1或-1 D.0CB分层练习-基础4.若三点A(-1,-2),B(4,8),C(5,x)在同一条直线上,则实数x的值为( )A.10 B.-10C.5 D.-5AA5.(2021年清远模拟)已知A(3,5),B(5,7),直线l的斜率是直线AB斜率的倍,则直线l的倾斜角为________.6.设P为x轴上的一点,A(-3,8),B(2,14),若PA的斜率是PB的斜率的两倍,则点P的坐标为________.分层练习-基础60°(-5,0) 8.以下叙述中:(1)任何一条直线都有倾斜角,也有斜率;(2)平行于x轴的直线的倾斜角是0°或180°;(3)直线的斜率范围是(-∞,+∞);(4)过原点的直线,斜率越大越靠近x轴;(5)两条直线的斜率相等,则它们的倾斜角相等;(6)两条直线的倾斜角相等,则它们的斜率相等.其中正确的序号是________.分层练习-基础(3)(5)9.已知点A(1,2),在坐标轴上求一点P使直线PA的倾斜角为60°.分层练习-基础分层练习-基础10.已知交于点M(8,6)的四条直线l1,l2,l3,l4的倾斜角之比为1∶2∶3∶4,又知l2过点N(5,3),求这四条直线的倾斜角.分层练习-巩固D12.(多选)在下列四个命题中,错误的有( )A.坐标平面内的任何一条直线均有倾斜角和斜率B.直线的倾斜角的取值范围是[0,π)C.若一条直线的斜率为tan α,则此直线的倾斜角为αD.若一条直线的倾斜角为α,则此直线的斜率为tan α分层练习-巩固ACD分层练习-巩固13.已知三点A(1-a,-5),B(a,2a),C(0,-a)共线,则a=________.14.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________.20分层练习-巩固15.已知两点A(-3,4),B(3,2),过点C(2,-1)的直线l与线段AB有公共点,求直线l的斜率k的取值范围.分层练习-巩固分层练习-巩固16.已知直线l过点P(3,4),且与以A(-1,0),B(2,1)为端点的线段AB有公共点,求l的斜率k的取值范围.分层练习-拓展18.若经过点A(1-t,1+t)和点B(3,2t)的直线的倾斜角α不是锐角,求实数t的取值范围.分层练习-拓展课堂小结1、直线的倾斜角定义及其范围:2、直线的斜率定义:3、斜率公式: 展开更多...... 收起↑ 资源预览