资源简介 (共20张PPT)第1章 有理数1.3 数轴1.掌握数轴的概念,能正确的画出数轴;2.理解数轴上的点和有理数的对应关系,会利用数轴上的点表示有理数.在小学阶段,我们可以用直线上依次排列的点来表示自然数.引入负数后,能否用类似的方式表示有理数呢?12345某数学活动小组参加绘制北京地铁1号线的线路图的活动. 他们发现该地铁线呈东西走向,并测得王府井站和建国门站分别位于天安门西站东侧1.8km和3.8km处,西单站位于天安门西站西侧1.2km处.你能画图表示它们的位置吗?如图,画一条直线表示北京地铁1号线,从左到右表示从西到东的方向.在直线上取一点O表示天安门西站的位置,规定1个单位长度(线段 OA 的长)代表1km的长度.1kmO西东A天安门西站在点O的右侧,与点O的距离为1.8个单位长度和3.8个单位长度的点B和点C,分别表示王府井站和建国门站的位置;在点O的左侧,与点O的距离为1.2个单位长度的点D表示西单站的位置.B1.8CD1kmO西东A天安门西站王府井站建国门站西单站1.23.8如何用数表示西单站、王府井站、建国门站和天安门西站的相对位置?思考B1.8CD1kmO西东A天安门西站王府井站建国门站西单站1.23.8“东”与“西”、“左”与“右”具有相反意义. 我们可以用正数、负数和零分别表示各地铁站的相对位置.如图,天安门西站的位置用0表示,规定向东为正,那么西单站的位置可以用-1.2表示,王府井站的位置可以用1.8表示,建国门站的位置可以用3.8表示.B1.8CDO西东A-1.23.801用直线上的点可以表示正数、0和负数,具体做法如下:1.如图,画一条直线(一般把它画成水平的),在这条直线上任意取一点表示数0,这个点叫做原点.2.规定自原点开始一侧的方向为正方向(习惯上取向右的方向为正方向),那么另一侧的方向就是负方向.3.选取适当的长度为单位长度.01原点2345 1 2 3 4 5正方向单位长度规定了原点、正方向和单位长度的直线叫做数轴. 4012 1 2 334数轴的特征1.数轴是一条直线,向两端无限延伸.2.数轴三要素:原点、正方向和单位长度.1.画一条水平直线,定原点(如图),原点表示0.2.规定从原点向右为正方向,那么相反的方向(从原点向左)则为负方向.3.选择适当的长度为单位长度.4.在原点左右两边依次标上对应的刻度数.探索:数轴的画法:012 4 1 2 334正方向例1 画出数轴,并用数轴上的点表示下列各数.2,-2.5,0, ,-4.解:如图所示. 4012 1 2 334-2.5-420通过例题我们可知正数,分数和小数都在可以在数轴上表示你有什么发现呢?小组交流讨论. 4012 1 2 334-2.5-420建立了数轴,任何一个有理数都可以用数轴上的一个点表示出来.数轴概念:规定了原点、正方向和单位长度的直线叫做数轴.2.数轴的画法.数轴的特征1.数轴是一条直线,向两端无限延伸.2.数轴三要素:原点、正方向和单位长度.1.下图中,是数轴的是( )012 1 2012 1 2012 1 2012 2 1A.B.C.D.D2.下列说法中,正确的是( )A.数轴是一条规定了原点、正方向和单位长度的射线;B.离原点近的点所表示的有理数较小;C.数轴上的点可以表示任意有理数;D.原点在数轴的正中间.C3.画出数轴,并用数轴上的点表示下列各数:,-3 ,0 ,5 ,-4 ,- ,3 ,-5解:如下图所示.-305-4-534.有理数 a,b,c 在数轴上的位置如图所示,则 ( )A. a,b,c 均是正数B. a,b,c 均是负数C. a,b 是正数,c 是负数D. a,b 是负数,c 是正数D 展开更多...... 收起↑ 资源预览