1.1 正数和负数(共26张PPT)2025-2026学年数学人教版(2024)七年级上册

资源下载
  1. 二一教育资源

1.1 正数和负数(共26张PPT)2025-2026学年数学人教版(2024)七年级上册

资源简介

(共26张PPT)
1.1 正数和负数
第一章 有理数
通过实际生活情境,抽象出负数的概念,体会引入负数的必要性与合理性.
会判断一个数是正数还是负数.
会用正数和负数表示具有相反意义的量,认识“0”的意义.
感受数学知识来源于生活,与生活紧密联系,培养分析和解决实际问题的能力.
数的产生和发展离不开生活和生产的需要
在小学,我们学过自然数、分数和小数,它们都是大于或等于0的数.
根据实际生活的需要,人们引进了另一种数,你知道是什么数吗?
活动 在日常生活、生产和科研中,经常遇到数的表示和运算的问题,请回答下列问题.
问题1 北京冬季某一天的最高气温为零上3摄氏度,最低气温为零下3摄氏度,如何用数区分“零上3摄氏度”和“零下3摄氏度”?
探究一:正数、负数的概念
零上3摄氏度
零下3摄氏度
3℃
- 3℃
零上和零下温度是以0 ℃为分界点的具有相反意义的量.
活动 在日常生活、生产和科研中,经常遇到数的表示和运算的问题,请回答下列问题.
问题2 某公司今年7月份盈利50万元,8月份亏损10万元.该公司在记账时如何用数分别表示“盈利50万元”和“亏损10万元”?
盈利50万元
亏损10万元
50万元
- 10万元
盈利额和亏损额是具有相反意义的量.
活动 在日常生活、生产和科研中,经常遇到数的表示和运算的问题,请回答下列问题.
问题3 某年,我国棉花产量比上年增长7.8%,玉米产量比上年减少0.7%.统计这两种农作物产量的变化情况时,如何用数分别表示“增长7.8%”和“减少0.7%”?
增长 7.8%
减少 0.7%
7.8%
- 0.7%
增长的百分率和减少的百分率是具有相反意义的量.
①必须是同类量,而且是成对出现的;
②只要求意义相反,不要求数量一定相等.
“零上3摄氏度”和“零下3摄氏度”
“盈利50万元”和“亏损10万元”
“增长7.8%”和“减少0.7%”
注意:不能说“盈利”和“亏损”是一对具有相反意义的量.
具有相反意义的量应满足的条件:
1. 下列选项中,是具有相反意义的量的是( )
A. 身高增加 1 cm与体重减少 1 kg
B. 海平面以上与海平面以下
C. 向东 5 m与向西 8 m
D. 存入 100 元与降价 10 元
C
不是同类量
不是同类量
没有数量
正数和负数的概念
一个数前面的“+” “”叫做它的符号,其中“+” 号可以省略不写,而“”号不能省略.
在数学中,像3,50,7.8%这样大于0的数叫作正数,像3, 10, 0.7% 这样在正数前加上符号“”的数叫作负数,其中符号“”是负号,读作“负”.
有时,为了明确表达意义,在正数的前面也加上符号“+”(读作“正”)
2. 读出下列各数,并把它们填在相应的圈里:
正数
负数
+73,
4.8,
-11,
,
+
- ,
0 既不是正数,也不是负数.
注意 判断一个数是正数还是负数时,不能简单地理解为带“+”号的数就是正数,带“-”号的数就是负数,如我们以后会学到-(-4)就不是负数,而+(-5)也不是正数.
0,
我国是历史上最早认识和使用负数的国家,至迟成书于东汉时期的我国古代数学著作《九章算术》 ,在“方程”一章中提出了正数、负数的概念及其加减运算法则,如关于家畜买卖的第八题,使用“正与负”来表示“卖出与买入”,将卖出家畜获得的钱数记为正,买入家畜付出的钱数记为负.
溯源
中国古代用算筹来记数和计算
魏晋时期的数学家刘徽在为《九章算术》作注时,用不同颜色的算筹分别表示正数和负数,红色为正,黑色为负.
例1:某校组织学生去劳动实践基地采摘橘子,并称重、封膜.一盒橘子的标准质量为.如果用正数表示超过标准的质量,那么
(1)比标准质量多和比标准质量少各怎么表示?
(2)各表示什么意义?
解:(1)比标准质量多用表示,比标准质量少,用表示.
(2)表示这盒橘子的质量比标准质量多,表示这盒橘子的质量比标准质量少.
活动 在小学阶段,0表示没有,学习了负数后,它不再简简单单的只表示没有,0的意义变得丰富起来,结合生活实际,请回答下列问题.
问题1:你知道温度计中的“0”刻度表示什么意思吗?
探究二:0的认识
温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点.
问题2:在表示某地的高度时,用正数表示高于海平面的海拔,用负数表示低于海平面的海拔,那么海拔为0m表示什么意思?
海平面的高度
问题3:你还能举出其他例子吗?
我国水准零点位于山东省青岛市;世界最高峰珠穆朗玛峰的海拔高度为米;我国陆地海拔最低处位于新疆吐鲁番盆地的艾丁湖,其海拔为米.
珠穆朗玛峰 m
吐鲁番盆地m
海平面
1. 计数时,0 表示没有.
2. 0 还可以用来表示基准.
如:海拔为 0 米,表示海平面的平均高度;0℃不代表没有温度,而是实际温度为冰点时的计量结果.
3. 0是正数和负数的分界.
0比任何正数小,比任何负数大.
0 的实际意义
3. 如果高于标准水位3 m 时水位记作+3 m,那么低于标准水位3 m时水位记作_______,标准水位应记作______.
-3 m
0 m
这里的“0 m”表示是水库的基准水位 0 m.
活动 根据之前学过的知识回答下列问题.
问题1 如图是地理中的等高线图,你能说出其中的正数和负数的意义分别是什么吗?
探究三:用正数和负数表示具有相反意义的量
A地的海拔高出海平面4600米;
B地的海拔低于海平面100米.
活动 根据之前学过的知识回答下列问题.
问题2 如图是手机中的部分收支款账单,你能说出其中的正数和负数的意义分别是什么?
探究三:用正数和负数表示具有相反意义的量
支出10.00元;
收入15.00元;
支出30.00元.
例2:(1)一个月内,李明体重增加1.2 kg,张华体重减少0.5 kg,刘伟体重无变化,写出他们这个月的体重增长值.
(2)四种品牌的手机今年第二季度的销售量与第一季度相比,变化率如下:
A品牌减少2%,B品牌增长4%,C品牌增长1%,D品牌减少3%
写出今年这些品牌的手机销售量的增长率.
解:(1)这个月李明体重增长1.2 kg,张华体重增长0.5 kg,刘伟体重增长0 kg.
(2)四种品牌的手机今年销售量的增长率是:A品牌2% ,B品牌4%,C品牌1%,D品牌3%.
增长-2%,是什么意思?什么情况下增长率是0?
正数
负数
0
正数负数定义
相反意义的量
表示实际意义
正数:大于0的数
负数:在正数前面加“一”
0:没有,分界,基准
正同负反
①必须是同类量,而且是成对出现的;
②只要求意义相反,不要求数量一定相等.
1.下列选项中,具有相反意义的量是(  )
A.胜二局与负三局
B.盈利3万元与支出3万元
C.气温升高了3 ℃与气温为-3 ℃
D.向东行20米和向南行20米
2.在下列数:-3,0,1,中,属于负数的有(  )
A.1个 B.2个 C.3个 D.4个
A
B
3.负数的概念最早出现在我国古代著名的数学专著《九章算术》中,如果把收入5元记作+5元,那么支出5元记作( )
A.-5元 B.0元
C.+5元 D.+10元
4.(易错题)下面是关于“0”的说法:①0是正数和负数的分界;②0只表示“什么也没有”;③0可以表示特定意义;④0是负数;⑤0是自然数.其中正确的有( )
A.3个 B.4个 C.5个 D.0个
A
A
5.(跨学科融合)孔子出生于公元前551年,如果用-551年表示,那么司马迁出生于公元前145年可表示为   ,欧阳修出生于公元1007年可表示为   .
6.用正数说出下列各题的意义.
(1)某企业生产结余是-200万元.   ;
(2)洋阳向西走了-100 m.   ;
(3)今年夏季小河的水位下降了-0.2 m.   .
-145年
+1007年
某企业生产亏损200万元
洋阳向东走了100 m
今年夏季小河的水位上升了0.2m
7.潜水艇上浮为正,下潜为负.若潜水艇原先在距水面80米深处,后来两次活动记录的情况是+30米,-15米,则现在潜水艇在距水面______米的深处.
65
80米
水面
30米
15米

=80-30+15
8.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北为正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,-9,+7,-14,-6,12,-6,+8.(单位:千米)问:
(1)B地在A地的何方,相距多少千米?
(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?
解:(1)18-9+7-14-6+12-6+8
=45-35
=10,
所以,B地在A地北方10千米;
(2)18+9+7+14+6+12+6+8=80(千米)
80×0.35=28(升)
答:一天共耗油28升.

展开更多......

收起↑

资源预览