浙教版备战2026年中考一轮复习专项训练50讲第25讲菱形的性质与判定(原卷+教师卷)

资源下载
  1. 二一教育资源

浙教版备战2026年中考一轮复习专项训练50讲第25讲菱形的性质与判定(原卷+教师卷)

资源简介

中小学教育资源及组卷应用平台
第25讲 菱形的性质与判定
考点展示·课标透视
中考考点 新课标要求
菱形的有关证明与计算 理解菱形的概念;探索并证明菱形的性质定理及其判定定理.
知识导航·学法指引
分类研究·深度理解
考点一 菱形
1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.
【易错点】对于菱形的定义要注意两点(缺一不可):①是平行四边形;②一组邻边相等.
2.菱形的性质定理
性质定理 符号语言 图示
边 四条边都相等 ∵四边形ABCD是菱形∴AB=CD=AD=BC
对角线 对角线互相垂直,且每一条对角线平分一组对角 ∵四边形ABCD是菱形∴AC⊥BD,AC平分∠BAD,AC平分∠BAD,AC平分∠BAD,AC平分∠BAD
【补充】
1)菱形是特殊的平行四边形,所以菱形具有平行四边形的一切性质;
2)菱形的两条对角线互相垂直,且对角线将菱形分成四个全等的直角三角形.
3)对角线互相垂直的四边形不一定是菱形.
4)菱形的面积公式:
①菱形的面积=底×高,即
②菱形的面积=两条对角线长的乘积的一半,即.
3.菱形的对称性
1)菱形是轴对称图形,两条对角线所在的直线都是它的对称轴.
2)菱形是中心对称图形,对角线的交点是它的对称中心.
4. 菱形的判定
判定定理 符号语言 图示
边 四条边相等的四边形是菱形. 在四边形ABCD中,∵AB=BC=CD=AD,∴四边形ABCD是菱形
一组邻边相等的平行四边形是菱形. 在平行四边形ABCD中,∵AB=BC,∴平行四边形ABCD是菱形
对角线 对角线互相垂直的平行四边形是菱形. 在平行四边形ABCD中,∵AC⊥BD,∴平行四边形ABCD是菱形
【典例1】( 2025·黑龙江龙东)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,请添加一个条件  AC⊥BD(答案不唯一)  ,使平行四边形ABCD为菱形.
【分析】由菱形的判定方法,即可判断.
【解答】解:∵对角线互相垂直的平行四边形是菱形,
∴添加一个条件AC⊥BD,使平行四边形ABCD为菱形.
故答案为:AC⊥BD(答案不唯一).
【点评】本题考查菱形的判定,平行四边形的性质,关键是掌握菱形的判定方法:一组邻边相等的平行四边形是菱形,四条边都相等的四边形是菱形,对角线互相垂直的平行四边形是菱形.
【典例2】如图,O是坐标原点,菱形ABOC的顶点B在x轴的负半轴上,顶点C的坐标为(3,4),则顶点A的坐标为(  )
A.(﹣4,2) B.(,4) C.(﹣2,4) D.(﹣4,)
【考点】菱形的性质;坐标与图形性质;勾股定理..
【答案】C
【分析】过C作CN⊥x轴于N,由勾股定理求出OC5,由菱形的性质推出AC∥BO,AC=CO=5,判定四边形MNCA是矩形,得到MN=AC=5,因此OM=MN﹣ON=5﹣3=2,因此点A的坐标为(﹣2,4).
【解答】解:过C作CN⊥x轴于N,过A作AM⊥x轴于M,
∵点C的坐标为(3,4),
∴ON=3,CN=4,
∴OC5,
∵四边形ABOC是菱形,
∴AC=OC=5,AC∥BO,
∴四边形AMNC是矩形,
∴MN=AC=5.
∴OM=MN﹣ON=2
∴点A的坐标为(﹣2,4).
故选:C.
【点评】本题主要考查菱形的性质,勾股定理,坐标与图形性质,关键是由勾股定理求出OC的长.
【典例3】(2025·贵州·中考真题)如图,在中,为对角线上的中点,连接,且,垂足为.延长至,使,连接,,且交于点.
(1)求证:是菱形;
(2)若,求的面积.
【答案】(1)见解析
(2)
【分析】(1)垂直平分,根据线段垂直平分线得到,即可证明其为菱形;
(2)先由等腰三角形可设,求出,由角直角三角形得到,可得为等边三角形,再由等腰三角形的性质证明,则,由勾股定理得,最后由即可求解.
【详解】(1)证明:∵为对角线上的中点,且,
∴垂直平分,
∴,
∵四边形是平行四边形,
∴是菱形;
(2)解:如图:
∵,
∴,

∴,
∵,
∴,
∴,
解得:
∴,
∵,
∴,
又∵,
∴为等边三角形,

∵四边形是菱形,
∴,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∴.
【点睛】本题考查了菱形的判定与性质,等边三角形的判定与性质,勾股定理,角直角三角形的性质,等腰三角形的性质,线段垂直平分线的性质等知识点,熟练掌握各知识点并灵活运用是解题的关键.
专项训练·深度理解
专项训练二十五:菱形的性质与判定
(时间:60分钟,总分100分)
一、选择题(本题共10题,每题3分,共30分)
1. (2023·福建·统考中考真题)如图,在菱形中,,则的长为( )

A.7 B.8 C.9 D.10
【答案】D
【分析】由菱形中,,易证得是等边三角形,根据等边三角形的性质即可得解.
【详解】解:∵四边形是菱形,
∴,
∵,
∴是等边三角形,
∴.
故答案为:D.
【点睛】本题考查了菱形的性质,等边三角形的判定与性质,熟记菱形的性质并推出等边三角形是解题的关键.
2. (2024 通辽)如图, ABCD的对角线AC,BD交于点O,以下条件不能证明 ABCD是菱形的是(  )
A.∠BAC=∠BCA B.∠ABD=∠CBD
C.OA2+OB2=AD2 D.AD2+OA2=OD2
【分析】由菱形的判定、矩形的判定分别对各个选项进行判断即可.
【解答】解:A、∵∠BAC=∠BCA,
∴AB=BC,
∴ ABCD是菱形,故选项A不符合题意;
B、∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠ADB=∠CBD,
∵∠ABD=∠CBD,
∴∠ABD=∠ADB,
∴AB=AD,
∴ ABCD是菱形,故选项B不符合题意;
C、∵四边形ABCD是平行四边形,
∴OB=OD,
∵OA2+OB2=AD2,
∴OA2+OD2=AD2,
∴∠AOD=90°,
∴AC⊥BD,
∴ ABCD是菱形,故选项C不符合题意,
D、∵AD2+OA2=OD2,
∴∠OAD=90°,
∴OA⊥AD,
∴不能证得 ABCD是菱形,故选项D符合题意;
故选:D.
【点评】本题考查了菱形的判定、平行四边形的性质,熟练掌握菱形的判定方法是解题的关键.
3. (2025·河南·中考真题)如图,在菱形中,,点在边上,连接,将沿折叠,若点落在延长线上的点处,则的长为( )
A.2 B. C. D.
【答案】D
【分析】由折叠的性质可知,,,再根据菱形的性质,得出,从而求出,则,即可求解.
【详解】解:由折叠的性质可知,,,
在菱形中,,
,,





故选:D.
【点睛】本题考查了折叠的性质,菱形的性质,等腰三角形的判定和性质,勾股定理,分母有理化等知识,掌握菱形的性质是解题关键.
4. (2023·甘肃武威·统考中考真题)如图,菱形中,,,,垂足分别为,,若,则EF为( ).

A.2 B. QUOTE EMBED Equation.DSMT4 C. D. QUOTE
【答案】B
【分析】根据菱形的性质,含直角三角形的性质,及三角函数即可得出结果.
【详解】解:在菱形中,,




在中,,
同理,,


在中,

故答案为:B.
【点睛】本题考查了菱形的性质,含直角三角形的性质,及三角函数等知识,熟练掌握菱形的性质是解题的关键.
5. (2025·河南·中考真题)如图,在菱形中,,点在边上,连接,将沿折叠,若点落在延长线上的点处,则的长为( )
A.2 B. C. D.
【答案】D
【分析】由折叠的性质可知,,,再根据菱形的性质,得出,从而求出,则,即可求解.
【详解】解:由折叠的性质可知,,,
在菱形中,,
,,





故选:D.
【点睛】本题考查了折叠的性质,菱形的性质,等腰三角形的判定和性质,勾股定理,分母有理化等知识,掌握菱形的性质是解题关键.
6. ( 2025·河南)如图,在菱形ABCD中,∠B=45°,AB=6,点E在边BC上,连接AE,将△ABE沿AE折叠,若点B落在BC延长线上的点F处,则CF的长为(  )
A.2 B.6﹣3 C.2 D.66
【解答】解:∵四边形ABCD是菱形,AB=6,
∴AB=BC=6,
根据折叠的性质得,AE⊥BF,BE=EF,
∵∠B=45°,
∴∠BAE=90°﹣45°=∠B,
∴AE=BEAB=3,
∴BF=2BE=6,
∴CF=BF﹣BC=66,
故选:D.
7. (2024 长沙)如图,在菱形ABCD中,AB=6,∠B=30°,点E是BC边上的动点,连接AE,DE,过点A作AF⊥DE于点F.设DE=x,AF=y,则y与x之间的函数解析式为(不考虑自变量x的取值范围)(  )
A.y= B.y= C.y= D.y=
【分析】过D作DH⊥BC交BC的延长线于H,在菱形ABCD中,AB=6,AB∥CD,AB=CD=AD=6,AD∥BC,根据平行线的性质得到∠DCH=∠B=30°,∠ADF=∠DEH,根据直角三角形 到现在得到DH=,根据相似三角形的判定和性质定理即可得到结论.
【解答】解:过D作DH⊥BC交BC的延长线于H,
在菱形ABCD中,AB=6,AB∥CD,AB=CD=AD=6,AD∥BC,
∴∠DCH=∠B=30°,∠ADF=∠DEH,
∴DH=,
∵AF⊥DE,
∴∠AFD=∠EHD=90°,
∴△ADF∽△DEH,
∴,
∴=,
∴y=,
故选:C.
【点评】本题考查了菱形的性质,含30°直角三角形的性质,相似三角形的判定和性质,正确地作出辅助线是解题的关键.
8. (2024 黑龙江)如图,菱形ABCD中,点O是BD的中点,AM⊥BC,垂足为M,AM交BD于点N,OM=2,BD=8,则MN的长为(  )
A. B. C. D.
【分析】先由菱形性质可得对角线AC与BD交于点O,由直角三角形斜边中线等于斜边一半可得OA=OC=OM=2,进而由菱形对角线求出边长,由sin∠MAC=sin∠OBC=解三角形即可求出MC=ACsin∠MAC=,MN=BMtan∠OBC=.
【解答】解:连接AC,如图,
∵菱形ABCD中,AC与BD互相垂直平分,
又∵点O是BD的中点,
∴A、O、C三点在同一直线上,
∴OA=OC,
∵OM=2,AM⊥BC,
∴OA=OC=OM=2,
∵BD=8,
∴OB=OD=BD=4,
∴BC===2,tan∠OBC===,
∵∠ACM+∠MAC=90°,∠ACM+∠OBC=90°,
∴∠MAC=∠OBC
∴sin∠MAC=sin∠OBC===,
∴MC=ACsin∠MAC=,
∴BM=BC MC=2 =,
∴MN=BMtan∠OBC=×=,
故选:C.
【点评】本题考查了解直角三角形,菱形的性质、直角三角形斜边中线等于斜边一半.熟练掌握各知识点是解题的关键.
9. (2025·四川德阳·中考真题)如图:点E、F、G、H分别是四边形边、、、的中点,如果,四边形的面积为24,且,则( )
A.4 B.5 C.8 D.10
【答案】B
【分析】本题考查中点四边形,熟练掌握中位线定理是解题的关键
利用三角形中位线定理及特殊四边形的判定与性质求解.
【详解】如图:连接,交于点O,
因为、、、分别是四边形边的中点,
∴,;,;,;, .
∵,
∴,
∴四边形是菱形.
∴,,
∴,
∵四边形面积为,,
∴,
解得 .

在中

故选:B.
10. (2024 泰安)如图,菱形ABCD中,∠B=60°,点E是AB边上的点,AE=4,BE=8,点F是BC上的一点,△EGF是以点G为直角顶点,∠EFG为30°角的直角三角形,连结AG.当点F在直线BC上运动时,线段AG的最小值是(  )
A.2 B. C. D.4
【分析】E作EM⊥BC,则点E、M、F、G四点共圆,从而得到AF=MH,因为AG≥GF,所以求出MH的值即可得解.
【解答】解:如图,过E作EM⊥BC于点M,作MH⊥AB于点H,作AF⊥GM于点F,
∵∠EMF+∠EGF=180°,
∴点E、M、F、G四点共圆,
∴∠EMG=∠EFG=30°,
∵∠B=60°,
∴∠BEM=30°=∠EMG,
∴MG∥AB,
∴四边形MHAF是矩形,
∴MH=AF,
∵BE=8,
∴EM=BE cos30°=4,
∴MH=EM=2=AF,
∴AG≥AF=2,
∴AG最小值是2.
故选:C.
【点评】本题主要考查了菱形的性质、解直角三角形、垂线段最短、圆内接四边形对角互补等知识,熟练掌握相关知识点和添加合适的辅助线是解题关键.
二、填空题(本题共6题,每题3分,共18分)
11. (2025·青海·中考真题)如图,在菱形中,,,分别为,的中点,且,则菱形的面积为 .
【答案】
【分析】本题主要考查了菱形的性质,三角形中位线定理,由,分别为,的中点,得,所以,然后根据菱形的面积为即可求解,掌握相关知识的应用是解题的关键.
【详解】解:∵,分别为,的中点,
∴,
∴,
∵四边形是菱形,
∴菱形的面积为,
故答案为:.
12. ( 2025·福建)如图,菱形ABCD的对角线相交于点O,EF过点O且与边AB,CD分别相交于点E,F.若OA=2,OD=1,则△AOE与△DOF的面积之和为     .
【解答】解:∵四边形ABCD是菱形,
∴DO=BO=1,CD∥AB,
∴∠ODF=∠OBE,∠OFD=∠OEB,
∴△DOF≌△BOE(AAS),
∴△DOF的面积=△BOE的面积,
∴△AOE与△DOF的面积之和=△BOA的面积2×1=1,
故答案为:1.
13. (2023·辽宁大连·统考中考真题)如图,在菱形中,为菱形的对角线,,点为中点,则的长为_______________.
【答案】
【分析】根据题意得出是等边三角形,进而得出,根据中位线的性质即可求解.
【详解】解:∵在菱形中,为菱形的对角线,
∴,,
∵,
∴是等边三角形,
∵,
∴,
∵是的中点,点为中点,
∴,
故答案为:.
【点睛】本题考查了菱形的性质,等边三角形的性质与判定,中位线的性质,熟练掌握以上知识是解题的关键.
14. (2023·湖北十堰·统考中考真题)如图,在菱形中,点E,F,G,H分别是,,,上的点,且,若菱形的面积等于24,,则___________________.

【答案】6
【分析】连接,交于点O,由题意易得,,,,则有,然后可得,设,则有,进而根据相似三角形的性质可进行求解.
【详解】解:连接,交于点O,如图所示:

∵四边形是菱形,,
∴,,,,
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
同理可得,
设,则有,
∵,
∴,
∴,即,
∴,
同理可得,即,
∴,
∴;
故答案为6.
【点睛】本题主要考查相似三角形的性质与判定及菱形的性质,熟练掌握菱形的性质及相似三角形的性质与判定是解题的关键.
15. (2023·甘肃武威·统考中考真题)如图,菱形中,,,,垂足分别为,,若,则________.

【答案】
【分析】根据菱形的性质,含直角三角形的性质,及三角函数即可得出结果.
【详解】解:在菱形中,,




在中,,
同理,,


在中,

故答案为:.
【点睛】本题考查了菱形的性质,含直角三角形的性质,及三角函数等知识,熟练掌握菱形的性质是解题的关键.
16. (2023·浙江绍兴·统考中考真题)如图,在菱形中,,连接,以点为圆心,长为半径作弧,交直线于点,连接,则的度数是________.

【答案】或
【分析】根据题意画出图形,结合菱形的性质可得,再进行分类讨论:当点E在点A上方时,当点E在点A下方时,即可进行解答.
【详解】解:∵四边形为菱形,,
∴,
连接,
①当点E在点A上方时,如图,
∵,,
∴,
②当点E在点A下方时,如图,
∵,,
∴,
故答案为:或.

【点睛】本题主要考查了菱形的性质,等腰三角形的性质,三角形的内角和以及三角形的外角定理,解题的关键是掌握菱形的对角线平分内角;等腰三角形两底角相等,三角形的内角和为;三角形的一个外角等于与它不相邻的两个内角之和.
三、解答题(本题共7题,共52分)
17. (6分)如图,,平分∠ABC交于点,点C在上且,连接.求证:四边形是菱形.
【分析】由,BD平分∠ABC得到∠ABD=∠ADB,进而得到△ABD为等腰三角形,进而得到AB=AD,再由BC=AB,得到对边AD=BC,进而得到四边形ABCD为平行四边形,再由邻边相等即可证明ABCD为菱形.
【详解】证明:∵,
∴∠ADB=∠DBC,
又BD平分∠ABC,
∴∠DBC=∠ABD,
∴∠ADB=∠ABD,
∴△ABD为等腰三角形,
∴AB=AD,
又已知AB=BC,
∴AD=BC,
又,即ADBC,
∴四边形ABCD为平行四边形,
又AB=AD,
∴四边形ABCD为菱形.
【点睛】本题考了角平分线性质,平行线的性质,菱形的判定方法,平行四边形的判定方法等,熟练掌握其判定方法及性质是解决此类题的关键.
18. (6分)(2025·江苏扬州·中考真题)如图,在中,对角线的垂直平分线与边,分别相交于点,.
(1)求证:四边形是菱形;
(2)若,,平分,求的长.
【分析】(1)先证明得到,根据得到,那么可得四边形是平行四边形,再由线段垂直平分线的性质得到,即可证明其为菱形;
(2)根据菱形的性质结合已知条件证明,即可求解.
【详解】(1)证明:∵四边形是平行四边形,
∴,
∴,
∵对角线的垂直平分线是,
∴,
∵,
∴,
∴,
∴四边形是平行四边形,
∵,
∴四边形是菱形;
(2)解:如图,
∵平分,
∴,
∵菱形,
∴,
∴,
∵四边形是平行四边形,
∴,,
∴,
∴,
∴,
∴.
【点睛】本题考查了相似三角形的判定与性质,菱形的判定,平行四边形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质等知识点,熟练掌握各知识点并灵活运用是解题的关键.
19. (6分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于 AD长为半径做弧,交 于点B,AB∥CD.
(1)求证:四边形ACDB为△CFE的亲密菱形;
(2)求四边形ACDB的面积.
【答案】(1)证明:由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,
∴∠ACB=∠DCB,
又∵AB∥CD,
∴∠ABC=∠DCB,
∴∠ACB=∠ABC,
∴AC=AB,
又∵AC=CD,AB=DB,
∴AC=CD=DB=BA,
四边形ACDB是菱形,
又∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,
∴四边形ACDB为△FEC的亲密菱形.
(2)解:设菱形ACDB的边长为x,∵CF=6,CE=12,
∴FA=6-x,
又∵AB∥CE,
∴△FAB∽△FCE,
∴ ,
即 ,
解得:x=4,
过点A作AH⊥CD于点H,
在Rt△ACH中,∠ACH=45°,
∴sin∠ACH= ,
∴AH=4× =2 ,
∴四边形ACDB的面积为: .
20. (8分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.
(1)求证:四边形AEBD是菱形;
(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.
【分析】(1)由△AFD≌△BFE,推出AD=BE,可知四边形AEBD是平行四边形,再根据BD=AD可得结论;
(2)解直角三角形求出EF的长即可解决问题;
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD∥CE,
∴∠DAF=∠EBF,
∵∠AFD=∠EFB,AF=FB,
∴△AFD≌△BFE,
∴AD=EB,∵AD∥EB,
∴四边形AEBD是平行四边形,
∵BD=AD,
∴四边形AEBD是菱形.
(2)解:∵四边形ABCD是平行四边形,
∴CD=AB=,AB∥CD,
∴∠ABE=∠DCB,
∴tan∠ABE=tan∠DCB=3,
∵四边形AEBD是菱形,
∴AB⊥DE,AF=FB,EF=DF,
∴tan∠ABE==3,
∵BF=,
∴EF=,
∴DE=3,
∴S菱形AEBD= AB DE= 3=15.
【点评】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
21. (8分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,CD.
(1)求证:△ECG≌△GHD;
(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.
(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.
【分析】(1)依据条件得出∠C=∠DHG=90°,∠CGE=∠GED,依据F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;
(2)过点G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;
(3)依据∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.
【解答】解:(1)∵AF=FG,
∴∠FAG=∠FGA,
∵AG平分∠CAB,
∴∠CAG=∠FGA,
∴∠CAG=∠FGA,
∴AC∥FG,
∵DE⊥AC,
∴FG⊥DE,
∵FG⊥BC,
∴DE∥BC,
∴AC⊥BC,
∴∠C=∠DHG=90°,∠CGE=∠GED,
∵F是AD的中点,FG∥AE,
∴H是ED的中点,
∴FG是线段ED的垂直平分线,
∴GE=GD,∠GDE=∠GED,
∴∠CGE=∠GDE,
∴△ECG≌△GHD;
(2)证明:过点G作GP⊥AB于P,
∴GC=GP,而AG=AG,
∴△CAG≌△PAG,
∴AC=AP,
由(1)可得EG=DG,
∴Rt△ECG≌Rt△GPD,
∴EC=PD,
∴AD=AP+PD=AC+EC;
(3)四边形AEGF是菱形,
证明:∵∠B=30°,
∴∠ADE=30°,
∴AE=AD,
∴AE=AF=FG,
由(1)得AE∥FG,
∴四边形AECF是平行四边形,
∴四边形AEGF是菱形.
【点评】本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.
22. (8分)( 2025·黑龙江龙东)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,tan∠COA,OA的长是一元二次方程x2﹣3x﹣18=0的根,过点C作CQ⊥OA交OA于点Q,交对角线OB于点P.动点M从点O以每秒1个单位长度的速度沿OA向终点A运动,动点N从点B以每秒个单位长度的速度沿BO向终点O运动,M、N两点同时出发,设运动时间为t秒.
(1)求点P坐标;
(2)连接MN、PM,求△PMN的面积S关于运动时间t的函数解析式;
(3)当t=3时,在对角线OB上是否存在一点E,使得△MNE是含30°角的等腰三角形.若存在,请直接写出点E的坐标;若不存在,请说明理由.
【分析】(1)解方程得出OA的长度,由菱形的性质与锐角函数综合,可得OQ和PQ的长度,即可得点P的坐标;
(2)分类讨论,分别由运动时间表示出线段长度,代入三角形的面积公式,化简整理即可;
(3)根据运动时间,确定点M和点N的坐标,分类讨论,根据等腰三角形的性质即可得点E的坐标.
【解答】解:(1)由x2﹣3x﹣18=0,
解得x1=6,x2=﹣3,
∵OA的长是x2﹣3x﹣18=0的根,
∴OA=6,
∵四边形OABC为菱形,
∴OA=OC=6,
∵,
∴∠COA=60°,
又∵CQ⊥OA,
∴∠OCQ=30°,
∴OQ=3,
∵四边形OABC为菱形,
∴OB平分∠COA,
∴∠POQ=30°,
∴,
∴点P的坐标为;
(2)过点M作MK⊥OB于点K,
由题可知,OM=t,则,
由(1)得:,则,
当0<﹣t﹣<4时,,
∴;
当4<t≤6时,,
∴;
综上所述,;
(3)如图,
当t=3时,OM=3,点M和点Q重合,,,∠ONM=∠NOM=30°,
假设在对角线OB上存在一点E,使得△MNE是含30°角的等腰三角形,
当∠EMN为顶角时,点E1与点O重合,E1(0,0);
当∠MEN为顶角时,点E2与点P重合,;
当∠ENM为顶角时,NE1=NM=OM=3,
设,则OE3=2a,
∵OE3+NE3=ON,
∴,
∴,
∴,

综上,当t=3时,在对角线OB上存在一点E,使得△MNE是含30°角的等腰三角形,E1(0,0),,;
【点评】本题考查解一元二次方程,菱形的性质,锐角三角函数,解直角三角形,等腰三角形,解题的关键是正确作出辅助线,熟练掌握分类讨论的思想方法.
23. (10分)如图,在菱形ABCD中,AB=AC,点E、F、G分别在边BC、CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).
(1)求证:△AEH≌△AGH;
(2)当AB=12,BE=4时:
①求△DGH周长的最小值;
②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.
【答案】(1)见解析;(2)①;②存在,或
【解析】
【分析】
(1)证明△ABE≌△ACG得到AE=AG,再结合角平分线,即可利用SAS证明△AEH≌△AGH;
(2)①根据题意可得点E和点G关于AF对称,从而连接ED,与AF交于点H,连接HG,得到△DGH周长最小时即为DE+DG,构造三角形DCM进行求解即可;
②分当OH与AE相交时,当OH与CE相交时两种情况分别讨论,结合中位线,三角形面积进行求解即可.
【详解】解:(1)∵四边形ABCD菱形,
∴AB=BC,
∵AB=AC,
∴△ABC是等边三角形,
∴∠B=∠ACB=∠ACD=60°,
∵BE=CG,AB=AC,
∴△ABE≌△ACG,
∴AE=AG,
∵AF平分∠EAG,
∴∠EAH=∠GAH,
∵AH=AH,
∴△AEH≌△AGH;
(2)①如图,连接ED,与AF交于点H,连接HG,
∵点H在AF上,AF平分∠EAG,且AE=AG,
∴点E和点G关于AF对称,
∴此时△DGH的周长最小,
过点D作DM⊥BC,交BC的延长线于点M,
由(1)得:∠BCD=∠ACB+∠ACD=120°,
∴∠DCM=60°,∠CDM=30°,
∴CM=CD=6,
∴DM=,
∵AB=12=BC,BE=4,
∴EC=DG=8,EM=EC+CM=14,
∴DE==DH+EH=DH+HG,
∴DH+HG+DG=
∴△DGH周长的最小值为;
②当OH与AE相交时,如图,AE与OH交于点N,
可知S△AON:S四边形HNEF=1:3,
即S△AON:S△AEC=1:4,
∵O是AC中点,
∴N为AE中点,此时ON∥EC,
∴,
当OH与EC相交时,如图,EC与OH交于点N,
同理S△NOC:S四边形ONEA=1:3,
∴S△NOC:S△AEC=1:4,
∵O为AC中点,
∴N为EC中点,则ON∥AE,
∴,
∵BE=4,AB=12,
∴EC=8,EN=4,
过点G作GP⊥BC,交BNC延长线于点P,
∵∠BCD=120°,
∴∠GCP=60°,∠CGP=30°,
∴CG=2CP,
∵CG=BE=4,
∴CP=2,GP=,
∵AE=AG,AF=AF,∠EAF=∠GAF,
∴△AEF≌△AGF,
∴EF=FG,
设EF=FG=x,则FC=8-x,FP=10-x,
在△FGP中,,
解得:x=,
∴EF=,
∴,
综上:存在直线OH,的值为或.
【点睛】本题考查了菱形的性质,全等三角形的判定和性质,直角三角形的性质,中位线,最短路径问题,知识点较多,难度较大,解题时要注意分情况讨论.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第25讲 菱形的性质与判定
考点展示·课标透视
中考考点 新课标要求
菱形的有关证明与计算 理解菱形的概念;探索并证明菱形的性质定理及其判定定理.
知识导航·学法指引
分类研究·深度理解
考点一 菱形
1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.
【易错点】对于菱形的定义要注意两点(缺一不可):①是平行四边形;②一组邻边相等.
2.菱形的性质定理
性质定理 符号语言 图示
边 四条边都相等 ∵四边形ABCD是菱形∴AB=CD=AD=BC
对角线 对角线互相垂直,且每一条对角线平分一组对角 ∵四边形ABCD是菱形∴AC⊥BD,AC平分∠BAD,AC平分∠BAD,AC平分∠BAD,AC平分∠BAD
【补充】
1)菱形是特殊的平行四边形,所以菱形具有平行四边形的一切性质;
2)菱形的两条对角线互相垂直,且对角线将菱形分成四个全等的直角三角形.
3)对角线互相垂直的四边形不一定是菱形.
4)菱形的面积公式:
①菱形的面积=底×高,即
②菱形的面积=两条对角线长的乘积的一半,即.
3.菱形的对称性
1)菱形是轴对称图形,两条对角线所在的直线都是它的对称轴.
2)菱形是中心对称图形,对角线的交点是它的对称中心.
4. 菱形的判定
判定定理 符号语言 图示
边 四条边相等的四边形是菱形. 在四边形ABCD中,∵AB=BC=CD=AD,∴四边形ABCD是菱形
一组邻边相等的平行四边形是菱形. 在平行四边形ABCD中,∵AB=BC,∴平行四边形ABCD是菱形
对角线 对角线互相垂直的平行四边形是菱形. 在平行四边形ABCD中,∵AC⊥BD,∴平行四边形ABCD是菱形
【典例1】( 2025·黑龙江龙东)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,请添加一个条件     ,使平行四边形ABCD为菱形.
【典例2】如图,O是坐标原点,菱形ABOC的顶点B在x轴的负半轴上,顶点C的坐标为(3,4),则顶点A的坐标为(  )
A.(﹣4,2) B.(,4) C.(﹣2,4) D.(﹣4,)
【典例3】(2025·贵州·中考真题)如图,在中,为对角线上的中点,连接,且,垂足为.延长至,使,连接,,且交于点.
(1)求证:是菱形;
(2)若,求的面积.
专项训练·深度理解
专项训练二十五:菱形的性质与判定
(时间:60分钟,总分100分)
一、选择题(本题共10题,每题3分,共30分)
1. (2023·福建·统考中考真题)如图,在菱形中,,则的长为( )

A.7 B.8 C.9 D.10
2. (2024 通辽)如图, ABCD的对角线AC,BD交于点O,以下条件不能证明 ABCD是菱形的是(  )
A.∠BAC=∠BCA B.∠ABD=∠CBD
C.OA2+OB2=AD2 D.AD2+OA2=OD2
3. (2025·河南·中考真题)如图,在菱形中,,点在边上,连接,将沿折叠,若点落在延长线上的点处,则的长为( )
A.2 B. C. D.
4. (2023·甘肃武威·统考中考真题)如图,菱形中,,,,垂足分别为,,若,则EF为( ).

A.2 B. QUOTE EMBED Equation.DSMT4 C. D. QUOTE
5. (2025·河南·中考真题)如图,在菱形中,,点在边上,连接,将沿折叠,若点落在延长线上的点处,则的长为( )
A.2 B. C. D.
6. ( 2025·河南)如图,在菱形ABCD中,∠B=45°,AB=6,点E在边BC上,连接AE,将△ABE沿AE折叠,若点B落在BC延长线上的点F处,则CF的长为(  )
A.2 B.6﹣3 C.2 D.66
7. (2024 长沙)如图,在菱形ABCD中,AB=6,∠B=30°,点E是BC边上的动点,连接AE,DE,过点A作AF⊥DE于点F.设DE=x,AF=y,则y与x之间的函数解析式为(不考虑自变量x的取值范围)(  )
A.y= B.y= C.y= D.y=
8. (2024 黑龙江)如图,菱形ABCD中,点O是BD的中点,AM⊥BC,垂足为M,AM交BD于点N,OM=2,BD=8,则MN的长为(  )
A. B. C. D.
9. (2025·四川德阳·中考真题)如图:点E、F、G、H分别是四边形边、、、的中点,如果,四边形的面积为24,且,则( )
A.4 B.5 C.8 D.10
10. (2024 泰安)如图,菱形ABCD中,∠B=60°,点E是AB边上的点,AE=4,BE=8,点F是BC上的一点,△EGF是以点G为直角顶点,∠EFG为30°角的直角三角形,连结AG.当点F在直线BC上运动时,线段AG的最小值是(  )
A.2 B. C. D.4
二、填空题(本题共6题,每题3分,共18分)
11. (2025·青海·中考真题)如图,在菱形中,,,分别为,的中点,且,则菱形的面积为 .
12. ( 2025·福建)如图,菱形ABCD的对角线相交于点O,EF过点O且与边AB,CD分别相交于点E,F.若OA=2,OD=1,则△AOE与△DOF的面积之和为     .
13. (2023·辽宁大连·统考中考真题)如图,在菱形中,为菱形的对角线,,点为中点,则的长为_______________.
14. (2023·湖北十堰·统考中考真题)如图,在菱形中,点E,F,G,H分别是,,,上的点,且,若菱形的面积等于24,,则___________________.

15. (2023·甘肃武威·统考中考真题)如图,菱形中,,,,垂足分别为,,若,则________.

16. (2023·浙江绍兴·统考中考真题)如图,在菱形中,,连接,以点为圆心,长为半径作弧,交直线于点,连接,则的度数是________.

三、解答题(本题共7题,共52分)
17. (6分)如图,,平分∠ABC交于点,点C在上且,连接.求证:四边形是菱形.
18. (6分)(2025·江苏扬州·中考真题)如图,在中,对角线的垂直平分线与边,分别相交于点,.
(1)求证:四边形是菱形;
(2)若,,平分,求的长.
19. (6分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于 AD长为半径做弧,交 于点B,AB∥CD.
(1)求证:四边形ACDB为△CFE的亲密菱形;
(2)求四边形ACDB的面积.
20. (8分)如图,在平行四边形ABCD中,DB=DA,点F是AB的中点,连接DF并延长,交CB的延长线于点E,连接AE.
(1)求证:四边形AEBD是菱形;
(2)若DC=,tan∠DCB=3,求菱形AEBD的面积.
21. (8分)如图,△ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,CD.
(1)求证:△ECG≌△GHD;
(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.
(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.
22. (8分)( 2025·黑龙江龙东)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,tan∠COA,OA的长是一元二次方程x2﹣3x﹣18=0的根,过点C作CQ⊥OA交OA于点Q,交对角线OB于点P.动点M从点O以每秒1个单位长度的速度沿OA向终点A运动,动点N从点B以每秒个单位长度的速度沿BO向终点O运动,M、N两点同时出发,设运动时间为t秒.
(1)求点P坐标;
(2)连接MN、PM,求△PMN的面积S关于运动时间t的函数解析式;
(3)当t=3时,在对角线OB上是否存在一点E,使得△MNE是含30°角的等腰三角形.若存在,请直接写出点E的坐标;若不存在,请说明理由.
23. (10分)如图,在菱形ABCD中,AB=AC,点E、F、G分别在边BC、CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).
(1)求证:△AEH≌△AGH;
(2)当AB=12,BE=4时:
①求△DGH周长的最小值;
②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表