资源简介 第六章 圆周运动 实验:探究向心力大小的表达式 知道向心力的定义及作用,知道它是根据力的作用效果命名的。 通过实验体会向心力的存在,会设计相关实验,探究向心力大小与半径、角速度、质量的关系,体会控制变量法在研究多个物理量关系中的应用。 2 1 重点 重难点 游乐场里有各种有趣的游戏项目。空中飞椅因其刺激性而深受很多年轻人的喜爱。 做圆周运动的物体,其运动状态在不断变化,说明物体一定受到了力的作用。那么迫使物体做圆周运动的力的方向有何特点呢? 飞椅与人一起做匀速圆周运动的过程中,受到了哪些力? 所受合力的方向有什么特点? 向心力 一 如图所示,用细绳拉着质量为m的小球在光滑水平桌面上做匀速圆周运动。 (2)这些力的合力如何?合力的方向有何特点? 答案 合力为绳的拉力,合力的方向始终指向圆心。 (1)小球受哪几个力的作用? 答案 受到重力、水平桌面的支持力和绳的拉力三个力的作用。 G FT FN 1.向心力的定义:做匀速圆周运动的物体所受的合力总____________,这个指向______的力叫作向心力。 2.向心力的特点 (1)向心力是矢量,方向始终____________且与速度方向______,所以向心力是___力。 (3)向心力是根据力的____________命名的,它是由_________或者_______________提供的。 (2)做匀速圆周运动的物体,线速度______不变,故向心力只改变线速度的______。 v Fn v Fn v Fn O 指向圆心 圆心 指向圆心 垂直 变 大小 方向 作用效果 某个力 几个力的合力 (1)物体由于做圆周运动而产生了向心力。( ) (2)对做匀速圆周运动的物体进行受力分析时,一定不要漏掉向心力。( ) (3)当物体受到的合外力大小不变,方向始终与线速度方向垂直且指向圆心时,物体做匀速圆周运动。( ) (4)圆周运动中指向圆心的合力等于向心力。( ) × × √ √ 1.如图所示,一只老鹰在水平面内盘旋做匀速圆周运动,则关于老鹰受力的说法正确的是 A.老鹰受重力、空气对它的作用力 和向心力的作用 B.老鹰受重力和空气对它的作用力 C.老鹰受重力和向心力的作用 D.老鹰受空气对它的作用力和向心力的作用 √ 老鹰在水平面内盘旋做匀速圆周运动,受到重力和空气对它的作用力,合力提供向心力,向心力是效果力,不是老鹰另外受到的力,故B正确,A、C、D错误。 探究影响向心力大小的因素 二 如图所示,在绳子的一端拴一个小沙袋(或其他小物体),另一端握在手中。将手举过头顶,使沙袋在水平面内做匀速圆周运动,此时沙袋所受的向心力近似等于绳对沙袋的拉力。 (1)保持小沙袋转动的速度和绳的长度不变, 改变小沙袋的质量,感受向心力的变化。 (2)保持绳的长度和小沙袋的质量不变,改变小沙袋转动的速度,感受向心力的变化。 (3)保持小沙袋的质量和小沙袋转动的速度(线速度)不变,改变绳的长度,感受向心力的变化。 质量越大,向心力越大 速度越大,向心力越大 绳长越短,向心力越大 2.如图甲所示,某实验小组探究影响向心力大小 的因素。用细绳系一纸杯(杯中有30 mL的水),将手 举过头顶,使纸杯在水平面内做匀速圆周运动。 (1)下列说法中正确的是____________。? A.保持质量、绳长不变,增大转速,绳对手的拉力将不变 B.保持质量、绳长不变,增大转速,绳对手的拉力将增大 C.保持质量、角速度不变,增大绳长,绳对手的拉力将不变 D.保持质量、角速度不变,增大绳长,绳对手的拉力将增大 √ √ 甲 (2)如图乙,绳离杯心40 cm处打一结点A,80 cm处打一结点B,学习小组中一位同学用手表计时,另一位同学在水平桌面上操作 (杯和桌面摩擦较小,可认为是光滑)。 操作一:手握绳结A,使杯每秒运动一周,体会向心力的大小。 操作二:手握绳结B,使杯每秒运动一周,体会向心力的大小。 操作三:手握绳结A,使杯每秒运动两周,体会向心力的大小。 操作四:手握绳结A,再向杯中添加30 mL的水,使杯每秒运动一周,体会向心力的大小。 则:①操作二与一相比较:质量、角速度相同,向心力的大小与转动半径大小有关; 操作三与一相比较:质量、半径相同,向心力的大小与角速度有关; 操作四与一相比较:_______________相同,向心力的大小与_____有关。 ?②物理学中此种实验方法叫____________法。 角速度、半径 质量 控制变量 操作一:手握绳结A,使杯每秒运动一周,体会向心力的大小。 操作二:手握绳结B,使杯每秒运动一周,体会向心力的大小。 操作三:手握绳结A,使杯每秒运动两周,体会向心力的大小。 操作四:手握绳结A,再向杯中添加30 mL的水,使杯每秒运动一周,体会向心力的大小。 ③小组总结阶段,手甩动,使杯做圆周运动的同学谈 感受时说:“感觉手腕发酸,感觉力的方向不是指向 圆心的向心力,而是背离圆心的力,跟书上说的不一样”,你认为该同学的说法是否正确,为什么? ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________。? 说法不正确。该同学受力分析的对象是自己的手,我们实验受力分析的对象是纸杯(包括水),细绳对纸杯(包括水)的拉力提供纸杯(包括水)做圆周运动的向心力,指向圆心。细绳对手的拉力与细绳对纸杯(包括水)的拉力大小相等、方向相反,背离圆心 实验:探究向心力大小的表达式 三 1.实验器材及原理 1 手柄 2 变速塔轮 3 变速塔轮 4 长槽 5 短槽 6 横臂 8 标尺 7 套筒 (1)匀速转动手柄1,可使变速塔轮2和3匀速转动,思考通过两变速塔轮控制两侧圆周运动角速度的原理; 答案 变速塔轮2和3边缘线速度大小相等,两塔轮转动半径不同,则两塔轮角速度不同。根据v=ωr可得,角速度与半径成反比。 (2)两塔轮分别与长槽4和短槽5同轴转动,槽内的小球转动角速度关系如何判定?? 答案 槽内小球角速度与对应塔轮角速度相同。 (3)小球做匀速圆周运动的向心力由谁提供? 答案 横臂对小球的作用力提供了小球做匀速圆周运动的向心力。 1 手柄 2 变速塔轮 3 变速塔轮 4 长槽 5 短槽 6 横臂 8 标尺 7 套筒 2.实验操作及数据分析 (1)在角速度、轨道半径不变的条件下,探究向心力与质量的关系: ? ω1∶ω2 r1∶r2 m1∶m2 F1∶F2 实验一 1∶1 1∶1 1∶2 1∶2 实验结论:在ω、r不变的条件下,Fn ∝ ___。 m (2)在角速度、质量不变的条件下,探究向心力与轨道半径的关系: 实验结论:在ω、m不变的条件下,Fn ∝ ___。 ? ω1∶ω2 r1∶r2 m1∶m2 F1∶F2 实验二 1∶1 2∶1 1∶1 2∶1 r (3)在质量、轨道半径不变的条件下,探究向心力与角速度的关系: 实验结论:在m、r不变的条件下,Fn ∝ _____。 精确的实验表明:向心力的大小与质量、轨道半径和角速度平方成正比。 ? ω1∶ω2 r1∶r2 m1∶m2 F1∶F2 实验三 1∶2 1∶1 1∶1 1∶4 实验四 1∶3 1∶1 1∶1 1∶9 ω2 1.根据实验结论能得出的向心力大小的表达式为? Fn=_____或Fn=_________。 2.若用周期或转速表示,还可以写为? Fn=______________=__________。 3.若同时用角速度和线速度表示可以写为Fn=_____。 mω2r ????????2????? ? m(2π????)2r ? m(2πn)2r mωv 3.(2023·南通市高一期中)用如图所示的装置来探究小球做圆周运动所需向心力的大小F与质量m、角速度ω和半径r之间的关系。两个变速塔轮通过皮带连接,转动手柄使槽内的钢球做匀速圆周运动。横臂的挡板对球的压力提供向心力,球对挡板的反作用力通过横臂的杠杆作用使弹簧测力套筒下降,从而露出标尺,标尺上的红白相间等分格的数量之 比等于两个球所受向心力的比值。装置中有大小相同的3个金属球可供选择使用,其中有2个钢球和1个铝球,如图是某次实验时装置的状态,图中两个球到标尺距离相等。 (1)在研究向心力的大小F与质量m关系时,要保持_______________相同;? A.ω和r B.ω和m C.m和r D.m和F (2)图中装置是在研究向心力的大小F与____________的关系;? A.质量m B.半径r C.角速度ω √ √ (2)图中两个钢球质量和运动半径相等,根据F=mω2r,则本实验是在研究向心力的大小F与角速度ω的关系。故选C。 (3)若图中标尺上红白相间的等分格显示出两个小球所受向心力的比值为1∶9,那么与皮带连接的两个变速塔轮 的半径之比为____________。? A.1∶3 B.3∶1 C.1∶9 D.9∶1 √ 根据向心力的计算公式F=mω2r,两球的向心力之比为1∶9,运动半径和质量相等,则转动的角速度之比为1∶3,因为靠皮带传动,变速塔轮的线速度大小相等,根据v=r'ω可知,与皮带连接的两个变速塔轮的半径之比为3∶1。故选B。 4.(2024·菏泽市高一期中)某实验兴趣小组在“DIS向心力实验器”的基础上,简化设计了如图甲的装置探究向心力大小与角速度的关系,实验步骤如下: Ⅰ.选择合适的滑块和遮光条,测得遮光条的宽度为d,将遮光条固定在滑块中心,并将滑块套在水平光滑杆上。 Ⅱ.将力传感器固定在转速可以调节的竖直转轴上, 并通过水平轻绳与滑块连接,滑块可以随杆一起绕竖直轴做匀速圆周运动。测得遮光条到转轴距离为L。 Ⅲ.改变转速,滑块每经过光电门一次,通过力传感器和光电门就同时获得一组拉力F和挡光时间Δt的数据,记录多组F和Δt的数据。 请回答下列问题: (1)若测得遮光条的宽度d=2.4 mm,到转轴距离L=0.20 m,经过光电门时的挡光时间Δt=1.5×10-3 s,则滑块转动的角速度ω=_____ rad/s(结果保留两位有效数字)。? (1)滑块经过光电门的线速度为v=????Δ????,滑块转动的角速度ω=????????, 得ω=8.0 rad/s ? 8.0 (2)按上述实验将测算得到的结果用作图法来处理,以力传感器读数F为纵轴,以___________[填“1Δ????”或“1(Δ????)2”]为横轴,可得到如图乙所示的一条直线;若图像的斜率为k,则滑块的质量为_________(用d、k、L表示)。? ? 1(Δ????)2 ? ????????????2 ? 对滑块,根据向心力公式F=mω2L,即F=????????2????·1(Δ????)2 以力传感器读数F为纵轴,以1(Δ????)2为横轴,可得到如题图乙所示的一条直线; 若图像的斜率为k,即有k=????????2????,得m=????????????2。 ? 探究向心力 大小的表达式 向心力 定义 特点 矢量,方向始终指向圆心 只改变线速度方向 效果力 影响因素 质量、速度、圆运动的半径 探究向心力表达式 实验器材 向心力演示仪 实验方法 控制变量法 实验步骤 控制变量探究F与m、r、ω的关系 实验结论 Fn=mω2r = ????????2?????= m(2π????)2r=m(2πn)2r ? Keep Thinking! 展开更多...... 收起↑ 资源预览