资源简介 (共23张PPT)第十五章轴对称八年级数学人教版·上册15.3.1 第2课时 等腰三角形的判定教学目标1 .掌握等腰三角形的判定方法.(重点)2.掌握等腰三角形的判定定理,并运用其进行证明和计算.(难点)新课导入情境引入在△ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形画出来?ABCA新课导入ABC如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测得∠B=∠C.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?互动探究一、等腰三角形的判定新课导入如图,在△ABC中, ∠B=∠C,那么它们所对的边AB和AC有什么数量关系 建立数学模型:CAB做一做:画一个△ABC,其中∠B=∠C=30°,请你量一量AB与AC的长度,它们之间有什么数量关系,你能得出什么结论?AB=AC你能验证你的结论吗?新课导入在△ABD与△ACD,∠1=∠2,∴ △ABD ≌ △ACD.∠B=∠C,AD=AD,∴AB=AC.过A作AD平分∠BAC交BC于点D.证明:CAB21D((△ABC是等腰三角形.新知探究∴ AC=AB. ( )即△ABC为等腰三角形.∵∠B=∠C, ( )知识要点等腰三角形的判定方法如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简写成“等角对等边”).已知等角对等边在△ABC中,应用格式:BCA((这又是一个判定两条线段相等的根据之一.新知探究ABCD21∵∠1=∠2 ,∴ BD=DC(等角对等边).∵∠1=∠2,∴ DC=BCABCD21(等角对等边).错,因为都不是在同一个三角形中.辨一辨:如图,下列推理正确吗 新知探究典例精析例1 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知: 如图,∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).又∵∠1=∠2,∴∠B=∠C,∴AB=AC(等角对等边).ABCE((12D新知探究例2 已知:如图,AD∥BC,BD平分∠ABC.求证:AB=ADBADC证明:∵ AD∥BC,∴∠ADB=∠DBC.∵ BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.总结:平分角+平行=等腰三角形新知探究如图,把一张长方形的纸沿着对角线折叠,重合部分是一个等腰三角形吗?为什么?BCADE变式训练:是由折叠可知,∠EBD=∠CBD.∵AD∥BC,∴∠EDB=∠CBD,∴∠EDB=∠EBD,∴BE=DE,△EBD是等腰三角形.新知探究练一练:1.在△ABC中,∠A和∠B的度数如下,能判定△ABC是等腰三角形的是( )A. ∠A=50°,∠B=70°B. ∠A=70°,∠B=40°C. ∠A=30°,∠B=90°D. ∠A=80°,∠B=60°B2.如图,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD等于_______.3cm新知探究例3 已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.ah作法:1.作线段AB=a.2.作线段AB的垂直平分线MN,交AB于点D.3.在MN上取一点C,使DC=h.4.连接AC,BC,则△ABC即为所求.ABCMND新知探究例4 如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F,求证:△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.ABCDEF新知探究方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.新知探究例5 如图,在△ABC中,AB=AC,∠ABC和∠ACB的平分线交于点O.过O作EF∥BC交AB于E,交AC于F. 探究EF、BE、FC之间的关系.OABCEF解:EF=BE+CF.理由如下:∵ EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO.∵ BO、CO分别平分∠ABC、∠ACB,∴∠CBO=∠ABO,∠BCO=∠ACO,∴∠EOB=∠ABO ,∠FOC=∠ACO,∴BE=OE,CF=OF,∴ EF=EO+FO=BE+CF.ABCOEF若AB≠AC,其他条件不变,图中还有等腰三角形吗?结论还成立吗?新知探究方法总结:判定线段之间的数量关系,一般做法是通过全等或利用“等角对等边”,运用转化思想,解决问题.课堂小结等腰三角形的判定等角对等边定义注意是指同一个三角形中有两边相等的三角形是等腰三角形课堂小测1.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的平分线,则图中的等腰三角形有( )A.5个 B.4个 C.3个 D.2个2.一个三角形的一个外角为130°,且它恰好等于一个不相邻的内角的2倍.这个三角形是( )A.钝角三角形 B.直角三角形 C.等腰三角形 D.等边三角形CA课堂小测13.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有( )A.1个 B.2个 C.3个 D.4个OabDA解析:(1)以O 为圆心OA长为半径画弧,与直线b有两个交点;(2)以A为圆心OA长为半径画弧,与直线b有一个交点;(3)作线段OA的垂直平分线,与直线b有一个交点.课堂小测4.如图,已知∠A=36°,∠ABD=36°,∠C=72°,则∠DBC=_____,∠BDC=_____,图中的等腰三角形有_______________________.36°72°△ABC、△DBA、△BCDABCD5.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为_____.9第4题图第5题图课堂小测6.如图,上午10 时,一条船从A处出发以20海里每小时的速度向正北航行,中午12时到达B处,从A、B望灯塔 C,测得∠NAC=40°,∠NBC=80°.求从B处到灯塔C的距离.解:∵∠NBC=∠A+∠C,∴∠C=80°- 40°= 40°,∴ ∠C = ∠A,∴ BA=BC(等角对等边).∵AB=20×(12-10)=40(海里),∴BC=40海里.答:B处距离灯塔C40海里.80°40°NBAC北课堂小测7.如图,在四边形ABCD中,AB=AD,∠B=∠D.求证:BC=CD.证明:连接BD.∵AB=AD,∴∠ABD=∠ADB.∵∠ABC=∠ADC,∴∠ABC-∠ABD=∠ADC-∠ADB,即∠DBC=∠BDC,∴BC=CD. 展开更多...... 收起↑ 资源预览