13.2 命题与证明 第3课时 三角形内角和定理及其推论 课件(共35张PPT) 沪科版数学八年级上册

资源下载
  1. 二一教育资源

13.2 命题与证明 第3课时 三角形内角和定理及其推论 课件(共35张PPT) 沪科版数学八年级上册

资源简介

(共35张PPT)
第13章
三角形中的边角关系、命题与证明
八年级数学沪科版·上册
13.2 第3课时 三角形内角和定理及其推论
新课引入
我的形状最小,那我的内角和最小.
我的形状最大,那我的内角和最大.
不对,我有一个钝角,所以我的内角和才是最大的.
一天,三类三角形通过对自身的特点,讲出了自己对三角形内角和的理解,请同学们作为小判官给它们评判一下吧!
新知探究
思考:除了度量以外,你还有什么办法可以验证三角形的内角和为180°呢
折叠
还可以用拼接的方法,你知道怎样操作吗?
新知探究
三角形的三个内角拼到一起恰好构成一个平角.
你能用数学的方法说明这个结论吗?
还有其他的拼接方法吗?
活动:在纸上任意画一个三角形,将它的内角剪下拼合在一起.
三角形的内角和的证明
新知探究
三角形三个内角的和等于180°.
求证:∠A+∠B+∠C=180°.
已知:△ABC.
证法1:过点A作l∥BC,
∴∠B=∠1.
(两直线平行,内错角相等)
∠C=∠2.
(两直线平行,内错角相等)
∵∠2+∠1+∠BAC=180°,
∴∠B+∠C+∠BAC=180°.
1
2
证法2:延长BC到D,过点C作CE∥BA,
∴ ∠A=∠1 .
(两直线平行,内错角相等)
∠B=∠2.
(两直线平行,同位角相等)
又∵∠1+∠2+∠ACB=180°,
∴∠A+∠B+∠ACB=180°.
C
B
A
E
D
1
2
新知探究
新知探究
C
B
A
E
D
F
证法3:过D作DE∥AC,作DF∥AB.
∴ ∠C=∠EDB,∠B=∠FDC.
(两直线平行,同位角相等)
∠A+∠AED=180°,
∠AED+∠EDF=180°,
(两直线平行,同旁内角相补)
∴ ∠A=∠EDF.
∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°.
想一想:同学们还有其他的方法吗?
新知探究
思考:多种方法证明的核心是什么?
借助平行线的“移角”的功能,将三个角转化成一个平角.
C
A
B
1
2
3
4
5
l
A
C
B
1
2
3
4
5
l
P
6
m
A
B
C
D
E
新知探究
在这里,为了证明的需要,在原来的图形上添画的线叫作辅助线.在平面几何里,辅助线通常画成虚线.
思路总结
为了证明三角形三个角的和为180°,转化为一个平角或同旁内角互补等,这种转化思想是数学中的常用方法.
作辅助线
新知探究
问题1:如图,在Rt△ABC中, ∠C=90°,两锐角的和等于多少呢?
在Rt△ABC中,因为 ∠C=90°,由三角形内角和定理,得∠A +∠B+∠C=90°,即
∠A +∠B=90°.
思考:由此,你可以得到直角三角形有什么性质呢?
三角形内角和定理的推论1、2
直角三角形的两锐角互余.
三角形内角和推论1:
由基本事实、定理直接得出的真命题叫作推论
新知探究
A
B
C
直角三角形的两个锐角互余.  
应用格式:
在Rt△ABC 中,
∵ ∠C =90°,
∴ ∠A +∠B =90°. 
直角三角形的表示:直角三角形可以用符号“Rt△”表示,直角三角形ABC 可以写成Rt△ABC .
总结归纳
新知探究
方法一(利用平行的判定和性质):
∵∠B=∠C=90°,
∴AB∥CD,
∴∠A=∠D.
方法二(利用直角三角形的性质):
∵∠B=∠C=90°,
∴∠A+∠AOB=90°,∠D+∠COD=90°.
∵∠AOB=∠COD,
∴∠A=∠D.
例1(1)如图 ,∠B=∠C=90°,AD交BC于点O,∠A
与∠D有什么关系?

新知探究
解:∠A=∠C.理由如下:
∵∠B=∠D=90°,
∴∠A+∠AOB=90°,∠C+∠COD=90°.
∵∠AOB=∠COD,
∴∠A=∠C.
(2)如图 ,∠B=∠D=90°,AD交BC于点O,∠A与
∠C有什么关系?请说明理由.

与图 有哪些共同点与不同点?
新知探究
例2 如图, ∠C=∠D=90 °,AD,BC相交于点E. ∠CAE与∠DBE有什么关系?为什么?
A
B
C
D
E
解:∠CAE= ∠DBE.理由如下:
在Rt△ACE中,
∠CAE=90 °- ∠AEC.
在Rt△BDE中,
∠DBE=90 °- ∠BED.
∵ ∠AEC= ∠BED,∴ ∠CAE= ∠DBE.
新知探究
解:∵CD⊥AB于D,BE⊥AC于E,
∴∠BEA=∠BDF=90°,
∴∠ABE+∠A=90°,
∠ABE+∠DFB=90°,
∴∠A=∠DFB.
∵∠DFB+∠BFC=180°,
∴∠A+∠BFC=180°.
【变式题】如图,△ABC中,CD⊥AB于D,BE⊥AC于E,CD,BE相交于F,∠A与∠BFC又有什么关系?为什么?
新知探究
思考:通过前面的例题,你能画出这些题型的基本
图形吗?
基本图形
∠A=∠C
∠A=∠D
总结归纳
新知探究
问题2:有两个角互余的三角形是直角三角形吗?
如图,在△ABC中, ∠A +∠B=90° , 那么△ABC
是直角三角形吗?
在△ABC中,因为 ∠A +∠B +∠C=180°, 又∠A +∠B=90°,所以∠C=90°. 于是△ABC是直角三角形.
三角形内角和推论2:
有两个角互余的三角形是直角三角形.
新知探究
A
B
C
应用格式:
在△ABC 中,
∵ ∠A +∠B =90°,
∴ △ABC 是直角三角形.
有两个角互余的三角形是直角三角形.  
总结归纳
新知探究
典例精析
例3 如图,∠C=90 °, ∠1= ∠2,△ADE是直角三
角形吗?为什么?
A
C
B
D
E
(
(
1
2
解:在Rt△ABC中,
∠2+ ∠A=90 °.
∵ ∠1= ∠2,
∴∠1 + ∠A=90 °.
即△ADE是直角三角形.
新知探究
例4 如图,CE⊥AD,垂足为E,∠A=∠C,求证:△ABD是直角三角形.
证明:△ABD是直角三角形.理由如下:
∵CE⊥AD,
∴∠CED=90°,
∴∠C+∠D=90°,
∵∠A=∠C,
∴∠A+∠D=90°,
∴△ABD是直角三角形.
新知探究
问题3 如图,△ABC的外角∠BCD与其不相邻的两内角(∠A,∠B)有什么关系?
三角形的外角
A
C
B
D
相邻的内角
不相邻的内角
∵∠A+∠B+∠ACB=180°,∠BCD+∠ACB=180°,
∴∠A+∠B=∠BCD.
你能用作平行线的方法证明此结论吗?
新知探究
D
证明:过C作CE平行于AB,
A
B
C
1
2
∴∠1= ∠B,
(两直线平行,同位角相等)
∠2= ∠A ,
(两直线平行,内错角相等)
∴∠ACD= ∠1+ ∠2= ∠A+ ∠B.
E
已知:如图,△ABC,求证:∠ACD=∠A+∠B.
验证结论
新知探究
如图 ,试比较∠2 、∠1的大小;
如图 ,试比较∠3 、∠2、 ∠1的大小.




解:∵∠2=∠1+∠B,
∴∠2>∠1.
解:∵∠2=∠1+∠B,
∠3=∠2+∠D,
∴∠3>∠2>∠1.
拓展探究
新知探究
推论3:三角形的外角等于与它不相邻的两个内角的和.
推论4:三角形的外角大于与它不相邻的任何一个内角.
A
B
C
D
∠B+∠C=∠CAD
∠CAD > ∠B, ∠CAD > ∠C
归纳总结
三角形内角和定理的推论
新知探究
练一练:说出下列图形中∠1和∠2的度数:
A
B
C
D
(
(
(
80 °
60 °
(
2
1
(1)
A
B
C
(
(
(
(
2
1
50 °
32 °
(2)
∠1=40 °, ∠2=140 °
∠1=18 °, ∠2=130 °
新知探究
例5 如图,P为△ABC内一点,∠BPC=150°,
∠ABP=20°,∠ACP=30°,求∠A的度数.
解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.
E
新知探究
解:延长BP交AC于点E,
则∠BPC,∠PEC分别为△PCE,△ABE的外角,
∴∠BPC=∠PEC+∠PCE,
∠PEC=∠ABE+∠A,
∴∠PEC=∠BPC-∠PCE
=150°-30°=120°.
∴∠A=∠PEC-∠ABE=120°-20°=100°.
新知探究
【变式题】 (一题多解)如图,∠A=51°,∠B=20°,
∠C=30°,求∠BDC的度数.
A
B
C
D
(
(
(
51 °
20 °
30 °
思路点拨:添加适当的辅助线将四边形问题转化为三角形问题.
新知探究
A
B
C
D
(
(
20 °
30 °
解法一:连接AD并延长于点E.
在△ABD中,∠1+∠ABD=∠3,
在△ACD中,∠2+∠ACD=∠4.
因为∠BDC=∠3+∠4,∠BAC=∠1+∠2,
所以∠BDC=∠BAC+∠ABD+∠ACD
=51° +20°+30°=101°.
E
)
)
1
2
)
3
)
4
你发现了什么结论?
新知探究
A
B
C
D
(
(
(
51 °
20 °
30 °
E
)
1
解法二:延长BD交AC于点E.
在△ABE中,∠1=∠ABE+∠BAE,
在△ECD中,∠BDC=∠1+∠ECD.
所以∠BDC
=∠BAC+∠ABD+∠ACD
=51° +20°+30°=101°.
解法三:连接延长CD交AB于点F(解题过程同解法二).
)
2
F
解题的关键是正确的构造三角形,利用三角形外角的性质及转化的思想,把未知角与已知角联系起来求解.
总结
课堂小结
三角形内角和定理的证明及推论
三角形内角和定理的证明
推论1:直角三角形的两锐角互余.
推论2:有两个角互余的三角形是直角三角形.
推论3:三角形的外角等于与它不相邻的两个内角的和.
推论4:三角形的外角大于与它不相邻的任何一个内角.
1.在一个直角三角形中,有一个锐角等于40°,则另
一个锐角的度数是(  )
A.40° B.50° C.60° D.70°
B
2.具备下列条件的△ABC中,不是直角三角形的是
(   )
A.∠A+∠B=∠C
B.∠A-∠B=∠C
C.∠A:∠B:∠C=1:2:3
D.∠A=∠B=3∠C
D
课堂小测
3.如图,AB//CD,∠A=37°, ∠C=63°,那么∠F
等于 ( )
F
A
B
E
C
D
A.26°
B.63°
C.37°
D.60°
A
课堂小测
4.如图,一张长方形纸片,剪去一部分后得到一个三角形,则图中∠1+∠2的度数是________.
90°
5.如图,AB、CD相交于点O,AC⊥CD于点C,
若∠BOD=38°,则∠A=________.
52°
第4题图
第5题图
6.在△ABC中,若∠A=43°,∠B=47°,则这个三角形是____________.
直角三角形
课堂小测
A
B
C
D
E
1
2
F
G
解:∵∠1是△FBE的外角,
∴∠1=∠B+ ∠E,
同理∠2=∠A+∠D.
在△CFG中,
∠C+∠1+∠2=180 ,
∴∠A+ ∠ B+∠C+ ∠ D+∠E
= 180 .
7.如图,求∠A+ ∠B+ ∠C+ ∠D+ ∠E的度数.
课堂小测

展开更多......

收起↑

资源预览