提能集训(六) 第十七章 因式分解(含答案) 2025-2026学年数学人教版八年级(2024)上册

资源下载
  1. 二一教育资源

提能集训(六) 第十七章 因式分解(含答案) 2025-2026学年数学人教版八年级(2024)上册

资源简介

提能集训(六)第十七章 因式分解
[测试时间:45分钟 测试范围:分值:100分]
一、选择题(每小题4分,共24分)
1.下列式子从左边到右边的变形是因式分解的是( )
A. B.
C. D.
2.[2024娄底模拟]给出下面四个多项式:;;;.其中含因式的多项式有( )
A.1个 B.2个 C.3个 D.4个
3.把多项式分解因式,结果正确的是( )
A. B.
C. D.
4.[2024北京模拟]若,,则的值为( )
A.57 B.21 C.45 D.33
5.[2024沅江模拟]如图,长宽分别为,的长方形的周长为16,面积为12,则的值为( )
A.80 B.96 C.192 D.240
6.[2024南通模拟]已知,且,则的值为( )
A. B.224 C. D.4 048
二、填空题(每小题5分,共30分)
7.如果关于的多项式是一个完全平方式,那么_ _ _ _ _ _ .
8.分解因式:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .
9.分解因式:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .
10.分解因式:_ _ _ _ _ _ _ _ _ _ _ _ .
11.[2024成都模拟]设,,,都是整数,且,,也可以表示成两个整数的平方和,其形式是_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .
12.[2024上海模拟]定义:如果一个正整数能表示为两个正整数,的平方差,且,则称这个正整数为“智慧优数”.例如,当,时,,则8是一个智慧优数.若将“智慧优数”从小到大排列,第2 024个“智慧优数”是_ _ _ _ .
三、解答题(共46分)
13.(12分)[2024淄博模拟]分解因式:
(1) ;
(2) ;
(3) .
14.(10分)用简便方法计算:
(1) ;
(2) .
15.(12分)[2024南宁模拟]阅读:换元法是一种重要的数学方法,是解决数学问题的有力工具.下面是对多项式进行因式分解的解题思路:
将“”看成一个整体,设,
则:原式,再将“”还原为“”即可.
解题过程如下:
解:设,
原式
.
问题:
(1) 以上解答过程因式分解的结果是否彻底?如果没有彻底,请写出完整的解答过程.
(2) 请你模仿以上方法,将多项式进行因式分解.
16.(12分)我们知道形如的二次三项式可以分解因式为,所以但小明在学习中发现,对于还可以使用以下方法分解因式:
.
教科书中这样写道:“形如的式子称为完全平方式.”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫作配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等问题.
例:求代数式 的最小值.
解:.
因为,
所以,
所以当 时,有最小值,最小值是.
根据阅读材料,用配方法解决下列问题:
(1) 分解因式:_ _ _ _ _ _ _ _ _ _ _ _ _ _ (直接写出结果).
(2) 填空:_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (_ _ _ _ _ _ )_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .
(3) 当为何值时,多项式有最大值?并求出这个最大值.
(4) 利用配方法,尝试求出等式中,的值.
提能集训(六)
一、选择题(每小题4分,共24分)
1.B 2.C 3.D 4.C 5.B 6.A
二、填空题(每小题5分,共30分)
7.
8.
9.
10.
11.
12.8 100
三、解答题(共46分)
13.解:(1)原式.
(2) 原式.
(3) 原式.
14.解:(1)原式.
(2) 原式
.
15.解:(1)不彻底.正确的解答过程如下:
设,
则原式
.
(2) 设,
则原式
.
16.(1)
(2) ; ; ; ; ;
解:(3)
.



当时,有最大值,最大值是11.
(4) ,

即,
,,
.

展开更多......

收起↑

资源预览