资源简介 保密★启用前2025-2026学年五年级数学上学期单元测试卷第七单元 解决问题的策略单元测试·基础卷( 全卷满分100 分,考试时间90 分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题(共20分)1.王大叔用22根1米长的木条围成一个长方形花圃,长和宽都是整米数,一共有( )种不同的围法。A.5 B.4 C.3 D.62.2022卡塔尔世界杯共有32支球队参加小组赛,分为8个小组。小组赛中每组的每两支球队都要比赛一场,那么本次世界杯小组赛一共要赛( )场。A.6 B.32 C.48 D.643.五年级举行乒乓球比赛,一共有8个同学参加。如果每两个人都要比赛一场,一共要比赛( )场。A.8 B.26 C.28 D.254.一把钥匙只能开一把锁。现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试( )次才能配好全部的钥匙和锁。A.6 B.7 C.8 D.95.如图一共有( )个长方形。A.7 B.8 C.10 D.126.元旦晚会上乐乐和他的5名同学进行“握手游戏”,每两人握一次,一共握手( )次。A.5 B.10 C.15 D.217.体育节到了,学校五年级举行足球比赛,一共有6个班参加。如果每两个班都要比赛一场,一共要比赛( )场。A.10 B.12 C.15 D.368.下图中一共有( )个正方形。A.16 B.24 C.30 D.329.2025年江苏省城市足球联赛(苏超联赛)是由江苏省体育局和13个地级市于2025年5月-11月主办的赛事,此次联赛为期7个月,分为常规赛和淘汰赛两个阶段。常规赛中,13支参赛球队将进行单循环较量(每两支球队都要赛一场),一共要举办( )场常规赛?A.156 B.78 C.85 D.2610.6名同学玩掰手腕比赛,看谁的力气大,每两名同学之间都要进行一场比赛,一共要进行( )场比赛。A.6 B.18 C.15 D.30二、填空题(共20分)11.把相同规格的小长方形(黑长方形和白长方形)按规律排列(如图),照此规律,当刚好出现第7个黑长方形时,黑长方形的个数占小长方形总个数的( )。12.有4个小朋友,如果他们每两个小朋友握一次手,一共要握( )次手。如果他们互相写一封信,一共要写( )封信。13.用30个边长1厘米的小正方形拼大长方形,一共有( )种不同的拼法,周长最小是( )厘米。14.有1克、2克和5克的砝码各一个,选其中的一个或几个放在天平的一端,能在天平上直接称出( )种不同质量的物体。15.柜台里陈列有3种不同的书包,4种不同的文具盒。妈妈要给文文买一个书包和一个文具盒,一共有( )种不同的买法。16.订阅以下杂志:《科学世界》《七彩文学》《数学乐园》。如果最少订阅1本,最多订阅3本,有( )种不同的订阅方法。17.有3支球队要举行足球比赛,规定每两支球队之间都要比赛一场,一共要比赛( )场;如果采用淘汰制,最后决出冠军,一共要赛( )场。18.小明、小红、小华、小丽4个好朋友互相问候,他们一共要通( )次电话,他们4个人互相发一条微信问候,一共要发( )条。19.学校举行乒乓球比赛,比赛以单场淘汰制(即每场比赛淘汰一名选手)进行。现有32名同学参加单打比赛,一共要进行( )场比赛才能产生单打冠军。20.女巫的10个盒子中分别装有0,1,2,3,4,5,6,7,8,9颗珍珠。商人要选出其中4个盒子,并把盒子里的珍珠平分给三个女儿,商人有( )种不同的选法。三、计算题(共18分)21.7.16-5.49-0.51 5.4÷(0.9×0.3) 8.8×101-8.822.直接写出得数。0.7×0.7= 1.1×10= 0.24×0.2=3.5×0.1= 0.2×0.4= 0.6×5=四、解答题(共42分)23.玉兰因其“色白微碧,香味似兰”而得名,是我国特有的名贵园林花木之一。小明家附近公园中的玉兰树开花了,小明一家周末要去赏花。这个公园有3个入口和2个出口,小明一家从进入公园到走出公园,一共有多少种走法?24.实验小学在课后服务时间开展社团活动,小强想从2种文艺类社团和3种体育类社团中任意选择2种社团,他有多少种不同的选法?如果他想从文艺类社团和体育类社团中各选1种,有多少种不同的选法?25.用20根长度均是1厘米的小棒,摆成一个长方形(或正方形)。将你摆的情况填在下表中。长/厘米 9宽/厘米 1面积/平方厘米 9(1)一共有( )种不同的摆法。(2)观察这些图形的面积,你的发现是: 。26.五(1)班46名同学去公园划船。如果每只大船可以坐6个人,每只小船可以坐4个人,每只船不能有空位子。有多少种不同的租法?如果租一只大船1小时的租金是20元,租一只小船的租金是15元,那么选择哪种方案最经济?27.一只袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有红、黄、蓝三种。小华每次从中任取两颗,有多少种不同的取法?28.红红有5元和2元的人民币若干张,她要拿出47元,有多少种不同的拿法?29.王阿姨在花卉市场选中三种花盆,单价分别是10.8元/个、8.5元/个和5.2元/个;有两种洒水壶,单价分别是15元/个、12元/个。(1)买一个花盆和一个洒水壶,一共有多少种不同的选法?(2)买8个花盆和1个洒水壶,最少要花多少元,最多呢?《解决问题的策略》参考答案题号 1 2 3 4 5 6 7 8 9 10答案 A C C A B C C C B C1.A22根1米长的木条总长度22米,根据长方形的周长÷2=长+宽,先求出长宽和,再确定有几种不同的长方形即可。22÷2=11(米)11=10+1=9+2=8+3=7+4=6+5一共有5种不同的围法。故答案为:A关键是掌握并灵活运用长方形周长公式,本题也可以采用列表法进行分析。2.C用32÷8=4,求出每个小组有4支球队,每一支球队都要和其他3支球队进行比赛,即用4乘3算出每个小组要进行的比赛场数,由于是比赛,就相当于握手问题,每两队的比赛应算做一次,需要除以2去掉重复的情况,最后乘8,求出总共进行的比赛场数即可。由分析可得:32÷8=4(支)4×(4-1)÷2×8=4×3÷2×8=12÷2×8=6×8=48(场)本次世界杯小组赛一共要赛48场。故答案为:C本题主要考查了握手问题的实际应用,要注意去掉重复的情况,如果数量较少,可以枚举法解决,如果数量比较多,可以用公式:握手次数=n(n-1)÷2(其中n表示数量)。3.C一共有8个同学,每人都要与其余的(8-1)人比赛一场,即8×(8-1)场,这样重复计算了一遍,再除以2就是比赛场数,据此分析。8×(8-1)÷2=8×7÷2=28(场)一共要比赛28场。故答案为:C本题主要考查了搭配问题的解决方法,注意不要重复。4.A第一把钥匙最坏的情况要试3次,把这把钥匙和这把锁拿出;剩下的3把锁和3把钥匙,最坏的情况要试2次,把这把钥匙和这把锁拿出;剩下的2把锁和2把钥匙,最坏的情况要试1次,把这把钥匙和这把锁拿出;剩下的1把锁和1把钥匙就不用试了。据此解答即可。由分析可知:3+2+1=5+1=6(次)一把钥匙只能开一把锁。现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试6次才能配好全部的钥匙和锁。故答案为:A5.B两组对边分别平行、四个角都是直角的四边形叫做长方形。如图所示,先数出单个的长方形,有4个;再数出由两个长方形组成的长方形,有2个;然后数出由三个长方形组成的长方形,有1个;最后数出由四个长方形组成的长方形,有1个;据此即可求得图中的长方形的总个数。4+2+1+1=6+1+1=7+1=8(个)则图中一共有8个长方形。故答案为:B本题属于巧数图形的题目,解题的关键是掌握数图形的方法,分别数出1、2、3、4个图形组成的长方形各有几个,再把所得的数相加即可求解,题目有一定抽象性,应认真分析,从而确定解题思路。6.C根据题意可知,乐乐和他的5名同学,一共有1+5=6名同学;每一个同学和其他5名同学握手,一共有6人,一共要握6×5=30次,但是这样算就将握手次数都重复计算了一遍,再除以2,即可求出一共要握手的次数,据此解答。1+5=6(名)6×(6-1)÷2=6×5÷2=30÷2=15(次)元旦晚会上乐乐和他的5名同学进行“握手游戏”,每两人握一次,一共握手15次。故答案为:C7.C每个班都要与其余(6-1)个班比赛一场,共比赛6×(6-1)场,这样重复计算了一遍,再除以2,就是比赛总场数。6×(6-1)÷2=6×5÷2=15(场)一共要比赛15场。故答案为:C8.C四条边相等、四个角都是直角的四边形叫做正方形。据此分别数出边长是1、2、3、4的正方形个数,相加即可。边长是1的正方形有:4×4=16(个)边长是2的正方形有:3×3=9(个)边长是3的正方形有:2×2=4(个)边长是4的正方形有:1个16+9+4+1=30(个)图中一共有30个正方形。故答案为:C9.B“单循环赛”的规则:每两支队伍之间只比赛一次,且不重复计算。参赛队伍数量为13支,每支队伍都要和其他(13-1)支队伍各比一场,因此初步计算总场数为:13×(13-1),但这样计算时,每一场比赛(如甲队对乙队)会被算两次(甲队算一次,乙队也算一次),所以需要除以2来去除重复计算的部分,即13×(13-1)÷2,计算出结果,即可求出一共要举办多少场常规赛。13×(13-1)÷2=13×12÷2=78(场)即一共要举办78场常规赛。故答案为:B10.C6名同学玩掰手腕比赛,每两名同学之间都要进行一场比赛,即每位同学要和另外5名同学各赛一场,也就是每名同学赛5场,可以据此算出总的比赛场次,由于两个同学只赛一场,重复计算了一次,所以用算出的总比赛场次再除以2即可。6×(6-1)÷2=30÷2=15(场)一共要进行15场比赛。故答案为:C11./0.25观察图形排列规律,可发现是按照“1个黑长方形,n个白长方形”这样的顺序循环排列,其中n依次从1开始递增。当出现第7个黑长方形时,需要先确定此时白长方形的个数。前面6个黑长方形对应的白长方形个数分别是1、2、3、4、5、6个,然后用黑长方形的个数除以此时小长方形(黑长方形与白长方形总和)的总个数,就能得到黑长方形个数占小长方形总个数的比例。7÷(7+1+2+3+4+5+6)=7÷(8+2+3+4+5+6)=7÷(10+3+4+5+6)=7÷(13+4+5+6)=7÷(17+5+6)=7÷(22+6)=7÷28==0.25黑长方形的个数占小长方形总个数的或0.25。12. 6 12每两人握一次,那么每个人要握3次;4个人一共握3×4次,但这样算每次握手就算成了2次,所以再除以2即可;4个小朋友,互相寄一封信,则每个小朋友都向外寄出了三封信,则所有小朋友共寄4×3=12封。据此解答即可。3×4÷2=12÷2=6(次)4×3=12(封)所以,有4个小朋友,如果他们每两个小朋友握一次手,一共要握6次手。如果他们互相写一封信,一共要写12封信。13. 4 22用30个边长1厘米的小正方形拼大长方形,则拼成的长方形面积等于30平方厘米,又因长方形的面积=长×宽,所以可以用列举法找出组成30的全部乘法算式,即可得出拼成长方形的长和宽,再根据长和宽的值计算出最短的周长。因为30=1×30=2×15=3×10=5×6,所以可以有以下4种拼法:宽1厘米,长30厘米;宽2厘米,长15厘米;宽3厘米,长10厘米;宽5厘米,长6厘米。它们的周长分别是(30+1)×2=31×2=62(厘米),(15+2)×2=17×2=34(厘米),(10+3)×2=13×2=26(厘米),(6+5)×2=11×2=22(厘米),所以周长最小是22厘米。所以,用30个边长为1厘米的小正方形拼大长方形,一共有4种不同的拼法,周长最小是22厘米。14.7分析题目,可以选择1个砝码,2个砝码或3个砝码,据此把每种情况对应的砝码组合都列举出来,然后计算出这些组合能称出多少种不同的质量。只选择1个砝码,可以称出1克、2克、5克的物体;选择2个砝码:1+2=3(克),1+5=6(克),2+5=7(克),可以称出3克、6克、7克的物体;选择3个砝码:1+2+5=8(克),可以称出8克的物体;所以能称出:1克、2克、3克、5克、6克、7克、8克的物体,一共能称出7种不同质量的物体。有1克、2克和5克的砝码各一个,选其中的一个或几个放在天平的一端,能在天平上直接称出7种不同质量的物体。15.12每一个书包可以搭配4个不同的文具盒,有3种不同的书包,就有(3×4)种搭配方式,可以用字母表示书包和文具盒,列举出所有的搭配方法。3种不同的书包用字母A、B、C表示;4种不同的文具盒a、b、c、d表示。搭配方式:Aa、Ab、Ac、Ad;Ba、Bb、Bc、Bd;Ca、Cb、Cc、Cd;3×4=12(种)所以,妈要给文文买一个书包和一个文具盒,一共有12种不同的买法。16.7分订阅1种,订阅2种,订阅3种进行讨论,求出每种的各有几种订法,再相加即可求解。①订阅1种时,可以是任意1种,有3种方法;②订阅2种时,是从三种中任选2种,共有3种方法;③订阅3种时就是3份杂志都订阅,有1种方法;共有:3+3+1=6+1=7(种)所以,订阅以下杂志:《科学世界》《七彩文学》《数学乐园》。如果最少订阅1本,最多订阅3本,有7种不同的订阅方法。17. 3 2(1)有3支足球队参加比赛,每两个队都比赛一场,即每支球队都要与其它三支球队比赛一场,每支球队要赛三场,所有球队要参赛3×2=6(场),由于比赛是在两队之间进行的,所以共比赛6÷2=3(场)。(2)淘汰赛的规则是:每场比赛淘汰一队,直到决出冠军。如果采用淘汰赛制,第一场:任意两队比赛,胜者晋级,败者淘汰。 第二场:第一场的胜者与剩余一队比赛,决出冠军。 总共需要2场比赛。根据分析可知:3×(3-1)÷2=3×2÷2=3(场)有3支球队要举行足球比赛,规定每两支球队之间都要比赛一场,一共要比赛(3)场;如果采用淘汰制,最后决出冠军,一共要赛(2)场。18. 6 12小明、小红、小华、小丽4个好朋友互相问候,通过列举法分析:小明和小红、小明和小华、小明和小丽、小红和小华、小红和小丽、小华和小丽,依次为3次,2次,1次,所以一共要通6次电话。他们4个人互相发一条微信问候,小明要给小红、小华、小丽发微信,共3条;小红要给小明、小华、小丽发微信,共3条;小华要给小明、小红、小丽发微信,共3条;小丽要给小明、小红、小华发微信,共3条,所以总共4×3=12条。4人互相通话,两人通一次即可,按顺序累加3+2+1=6次,所以小明、小红、小华、小丽4个好朋友互相问候,他们一共要通6次电话;4人互相发微信,有发送接收顺序,即每人给另外3人发,4人就共发4×3=12条,所以他们4个人互相发一条微信问候,一共要发12条。19.31根据题意,现有32名同学参加单打比赛,比赛以单场淘汰制,即每场比赛淘汰1人;32人两两比赛,第一轮,进行32÷2=16场,剩下16人;第二轮,进行16÷2=8场,剩下8人;第三轮,进行8÷2=4场,剩下4人;第四轮,进行4÷2=2场,剩下2人;第五轮,进行2÷2=1场,剩下1人,即可产生冠军,一共进行了(16+8+4+2+1)场比赛。32÷2=16(场)16÷2=8(场)8÷2=4(场)4÷2=2(场)2÷2=1(场)16+8+4+2+1=31(场)一共要进行31场比赛才能产生单打冠军。20.72要选出其中4个盒子,并把盒子里的珍珠平分给三个女儿,那就要求选出的三个数之和是3的倍数,根据除以3的余数对0~9这9个数进行分类,根据余数的特征进行求解。除以3余0:0,3,6,9;除以3余1:1,4,7;除以3余2:2,5,8;从除以3余1这一组中选三个,再从除以3余0这一组中选一个:1×4=4(种)从除以3余2这一组中选三个,再从除以3余0这一组中选一个:1×4=4(种)从除以3余1这一组中选2个,再从除以3余2这一组中选二个:3×3=9(种)从除以3余0这一组中选二个,从除以3余1这一组中选一个,从除以3余2这一组中选一个:6×3×3=54(种)从除以3余0这一组中选四个:1种选法;4+4+9+54+1=72(种)因此,商人有72种不同的选法。本题考查的是计数问题,加乘原理是计数中最常用的方法。21.1.16;20;880(1)根据减法的性质a-b-c=a-(b+c)进行简算;(2)根据除法的性质a÷(b×c)=a÷b÷c进行简算;(3)根据乘法分配律a×c+b×c=(a+b)×c进行简算。(1)7.16-5.49-0.51=7.16-(5.49+0.51)=7.16-6=1.16(2)5.4÷(0.9×0.3)=5.4÷0.9÷0.3=6÷0.3=20(3)8.8×101-8.8=8.8×101-8.8×1=8.8×(101-1)=8.8×100=88022.0.49;11;0.0480.35;0.08;3略23.6种由题意可知,这个公园有3个入口和2个出口,根据乘法原理:做一件事,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事共有N=×××…×种不同的方法 ,据此解答即可。3×2=6(种)答:小明一家从进入公园到走出公园,一共有6种走法。24.10种;6种先给2种文艺类社团和3种体育类社团编号,然后用列举法把所有符合要求的组合列举出来,再数一数,即可得解。设2种文艺类社团的编号为A、B;3种体育类社团的编号为C、D、E;任意选择2种社团,可以是:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,一共有10种不同的选法。从文艺类社团和体育类社团中各选1种,可以是:AC、AD、AE、BC、BD、BE,一共有6种不同的选法。答:他有10种不同的选法,如果他想从文艺类社团和体育类社团中各选1种,有6种不同的选法。25.表见详解(1)5 (2)长和宽越接近,面积越大(答案不唯一)(1)用20根长度均是1厘米的小棒,摆成一个长方形(或正方形),即长方形(或正方形)的周长是20厘米;根据长方形的特点可知,长方形的长与宽的和是20÷2=10厘米,则从9开始作为长方形的长,依次减少,并求得相应的长方形的宽,据此填表得出一共有多少种摆法;再根据长方形的面积=长×宽求得各种摆法的面积;(2)根据表格发现,当长与宽越接近时,面积就越大(答案不唯一)。长/厘米 9 8 7 6 5宽/厘米 1 2 3 4 5面积/平方厘米 9 16 21 24 25(1)一共有5种不同的摆法。(2)观察这些图形的面积,你的发现是:长和宽越接近,面积越大(答案不唯一)。26.4种;租7条大船和1条小船用列表法进行解答,根据大船数量×大船坐的人数+小船数量×小船坐的人数=能坐的总人数,用划船的人数除以每只大船能坐的人数,有余数时采用进一法,即46÷6≈8(只),即大船数量从8只开始,逐步减少大船数量,增加小船数量,保证能坐的人数大于或等于46人,列举出所有的情况,找出没有空位子的租法,再根据大船数量×租金+小船数量×租金=需要的钱数,求出所有没有空位子的租法的钱数,比较即可。大船数量 小船数量 乘坐人数 有无空位8 0 48 有7 1 46 无6 3 48 有5 4 46 无4 6 48 有3 7 46 无2 9 48 有1 10 46 无0 12 48 有7×20+1×15=140+15=155(元)5×20+4×15=100+60=160(元)3×20+7×15=60+105=165(元)1×20+10×15=20+150=170(元)155<160<165<170答:有4种不同的租法,租7条大船和1条小船最经济。27.6种由题意得,袋中的玻璃珠子规格相同、颜色不同,且数量足够多。所以任取两颗的可能组合可以通过列举法找到。按照颜色相同和颜色不同的顺序列举即可。由题意得,小华任取两颗,可能的取法有以下几种,颜色相同:红和红,黄和黄,蓝和蓝颜色不同:红和黄,红和蓝,黄和蓝所以,一共有6种不同的取法。28.5种根据题意,5元人民币的数量×5+2元人民币的数量×2=47,根据47÷5=9(张)……2(元)可知5元的人民币最多只能有9张,据此逐渐减少5元人民币的数量,同时增加2元人民币的数量,直到找出所有总金额等于47元的组合方式即可。47÷5=9(张)……2(元)拿9张5元1张2元:5×9+2×1=45+2=47(元)拿7张5元6张2元:5×7+2×6=35+12=47(元)拿5张5元11张2元:5×5+2×11=25+22=47(元)拿3张5元16张2元:5×3+2×16=15+32=47(元)拿1张5元21张2元:5×1+2×21=5+42=47(元)答:有5种不同的拿法。29.(1)6种;(2)最少53.6元;最多101.4元(1)买一个花盆有3种选法,买一个洒水壶有2种选法,最后用乘法求出买一个花盆和一个洒水壶所有不同的选法;(2)需要钱数最少时买单价最便宜的花盆和洒水壶,需要钱数最多时买单价最贵的花盆和洒水壶,最后根据“总价=单价×数量”求出需要花的总钱数,据此解答。(1)3×2=6(种)答:一共有6种不同的选法。(2)最少:5.2×8+12=41.6+12=53.6(元)最多:10.8×8+15=86.4+15=101.4(元)答:最少要花53.6元,最多要花101.4元。(共7张PPT)苏教版 五年级上册第七单元 解决问题的策略单元测试·基础卷试卷分析一、试题难度整体难度:一般难度 题数较易 2适中 26较难 1一、试题难度三、知识点分布一、选择题 1 0.65 长、正方形周长的应用2 0.65 搭配问题;带有小括号的混合运算3 0.65 搭配问题4 0.65 搭配问题5 0.65 用列举法解决图形问题6 0.65 搭配问题7 0.65 比赛问题8 0.65 正方形的概念及特点9 0.65 组合问题10 0.65 组合问题三、知识点分布二、填空题 11 0.85 图形的变化规律;数与形(归纳递推)12 0.65 搭配问题;组合问题13 0.65 长方形的面积;求最短周长(长方形和正方形);用列举法解决图形问题14 0.65 用列举法解决搭配问题15 0.65 搭配问题16 0.65 搭配问题17 0.65 比赛问题18 0.65 排列问题;组合问题19 0.65 比赛问题20 0.4 搭配问题三、知识点分布三、计算题 21 0.65 整数乘法运算定律推广到小数乘法;小数除法相关的简便计算;与小数减法相关的简便运算22 0.65 小数与整数的乘法;小数与小数的乘法四、解答题 23 0.85 搭配问题24 0.65 用列举法解决搭配问题25 0.65 长方形的周长;长方形的面积;用列表法解决问题26 0.65 租船问题;用列举法解决搭配问题27 0.65 搭配问题28 0.65 用列举法解决钱币问题29 0.65 经济问题;搭配问题;小数与整数的乘法;利用小数与整数的乘法解决问题保密★启用前2025-2026学年五年级数学上学期单元测试卷第七单元 解决问题的策略单元测试·基础卷( 全卷满分100 分,考试时间90 分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上《解决问题的策略》参考答案题号 1 2 3 4 5 6 7 8 9 10答案 A C C A B C C C B C1.A22根1米长的木条总长度22米,根据长方形的周长÷2=长+宽,先求出长宽和,再确定有几种不同的长方形即可。22÷2=11(米)11=10+1=9+2=8+3=7+4=6+5一共有5种不同的围法。故答案为:A关键是掌握并灵活运用长方形周长公式,本题也可以采用列表法进行分析。2.C用32÷8=4,求出每个小组有4支球队,每一支球队都要和其他3支球队进行比赛,即用4乘3算出每个小组要进行的比赛场数,由于是比赛,就相当于握手问题,每两队的比赛应算做一次,需要除以2去掉重复的情况,最后乘8,求出总共进行的比赛场数即可。由分析可得:32÷8=4(支)4×(4-1)÷2×8=4×3÷2×8=12÷2×8=6×8=48(场)本次世界杯小组赛一共要赛48场。故答案为:C本题主要考查了握手问题的实际应用,要注意去掉重复的情况,如果数量较少,可以枚举法解决,如果数量比较多,可以用公式:握手次数=n(n-1)÷2(其中n表示数量)。3.C一共有8个同学,每人都要与其余的(8-1)人比赛一场,即8×(8-1)场,这样重复计算了一遍,再除以2就是比赛场数,据此分析。8×(8-1)÷2=8×7÷2=28(场)一共要比赛28场。故答案为:C本题主要考查了搭配问题的解决方法,注意不要重复。4.A第一把钥匙最坏的情况要试3次,把这把钥匙和这把锁拿出;剩下的3把锁和3把钥匙,最坏的情况要试2次,把这把钥匙和这把锁拿出;剩下的2把锁和2把钥匙,最坏的情况要试1次,把这把钥匙和这把锁拿出;剩下的1把锁和1把钥匙就不用试了。据此解答即可。由分析可知:3+2+1=5+1=6(次)一把钥匙只能开一把锁。现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试6次才能配好全部的钥匙和锁。故答案为:A5.B两组对边分别平行、四个角都是直角的四边形叫做长方形。如图所示,先数出单个的长方形,有4个;再数出由两个长方形组成的长方形,有2个;然后数出由三个长方形组成的长方形,有1个;最后数出由四个长方形组成的长方形,有1个;据此即可求得图中的长方形的总个数。4+2+1+1=6+1+1=7+1=8(个)则图中一共有8个长方形。故答案为:B本题属于巧数图形的题目,解题的关键是掌握数图形的方法,分别数出1、2、3、4个图形组成的长方形各有几个,再把所得的数相加即可求解,题目有一定抽象性,应认真分析,从而确定解题思路。6.C根据题意可知,乐乐和他的5名同学,一共有1+5=6名同学;每一个同学和其他5名同学握手,一共有6人,一共要握6×5=30次,但是这样算就将握手次数都重复计算了一遍,再除以2,即可求出一共要握手的次数,据此解答。1+5=6(名)6×(6-1)÷2=6×5÷2=30÷2=15(次)元旦晚会上乐乐和他的5名同学进行“握手游戏”,每两人握一次,一共握手15次。故答案为:C7.C每个班都要与其余(6-1)个班比赛一场,共比赛6×(6-1)场,这样重复计算了一遍,再除以2,就是比赛总场数。6×(6-1)÷2=6×5÷2=15(场)一共要比赛15场。故答案为:C8.C四条边相等、四个角都是直角的四边形叫做正方形。据此分别数出边长是1、2、3、4的正方形个数,相加即可。边长是1的正方形有:4×4=16(个)边长是2的正方形有:3×3=9(个)边长是3的正方形有:2×2=4(个)边长是4的正方形有:1个16+9+4+1=30(个)图中一共有30个正方形。故答案为:C9.B“单循环赛”的规则:每两支队伍之间只比赛一次,且不重复计算。参赛队伍数量为13支,每支队伍都要和其他(13-1)支队伍各比一场,因此初步计算总场数为:13×(13-1),但这样计算时,每一场比赛(如甲队对乙队)会被算两次(甲队算一次,乙队也算一次),所以需要除以2来去除重复计算的部分,即13×(13-1)÷2,计算出结果,即可求出一共要举办多少场常规赛。13×(13-1)÷2=13×12÷2=78(场)即一共要举办78场常规赛。故答案为:B10.C6名同学玩掰手腕比赛,每两名同学之间都要进行一场比赛,即每位同学要和另外5名同学各赛一场,也就是每名同学赛5场,可以据此算出总的比赛场次,由于两个同学只赛一场,重复计算了一次,所以用算出的总比赛场次再除以2即可。6×(6-1)÷2=30÷2=15(场)一共要进行15场比赛。故答案为:C11./0.25观察图形排列规律,可发现是按照“1个黑长方形,n个白长方形”这样的顺序循环排列,其中n依次从1开始递增。当出现第7个黑长方形时,需要先确定此时白长方形的个数。前面6个黑长方形对应的白长方形个数分别是1、2、3、4、5、6个,然后用黑长方形的个数除以此时小长方形(黑长方形与白长方形总和)的总个数,就能得到黑长方形个数占小长方形总个数的比例。7÷(7+1+2+3+4+5+6)=7÷(8+2+3+4+5+6)=7÷(10+3+4+5+6)=7÷(13+4+5+6)=7÷(17+5+6)=7÷(22+6)=7÷28==0.25黑长方形的个数占小长方形总个数的或0.25。12. 6 12每两人握一次,那么每个人要握3次;4个人一共握3×4次,但这样算每次握手就算成了2次,所以再除以2即可;4个小朋友,互相寄一封信,则每个小朋友都向外寄出了三封信,则所有小朋友共寄4×3=12封。据此解答即可。3×4÷2=12÷2=6(次)4×3=12(封)所以,有4个小朋友,如果他们每两个小朋友握一次手,一共要握6次手。如果他们互相写一封信,一共要写12封信。13. 4 22用30个边长1厘米的小正方形拼大长方形,则拼成的长方形面积等于30平方厘米,又因长方形的面积=长×宽,所以可以用列举法找出组成30的全部乘法算式,即可得出拼成长方形的长和宽,再根据长和宽的值计算出最短的周长。因为30=1×30=2×15=3×10=5×6,所以可以有以下4种拼法:宽1厘米,长30厘米;宽2厘米,长15厘米;宽3厘米,长10厘米;宽5厘米,长6厘米。它们的周长分别是(30+1)×2=31×2=62(厘米),(15+2)×2=17×2=34(厘米),(10+3)×2=13×2=26(厘米),(6+5)×2=11×2=22(厘米),所以周长最小是22厘米。所以,用30个边长为1厘米的小正方形拼大长方形,一共有4种不同的拼法,周长最小是22厘米。14.7分析题目,可以选择1个砝码,2个砝码或3个砝码,据此把每种情况对应的砝码组合都列举出来,然后计算出这些组合能称出多少种不同的质量。只选择1个砝码,可以称出1克、2克、5克的物体;选择2个砝码:1+2=3(克),1+5=6(克),2+5=7(克),可以称出3克、6克、7克的物体;选择3个砝码:1+2+5=8(克),可以称出8克的物体;所以能称出:1克、2克、3克、5克、6克、7克、8克的物体,一共能称出7种不同质量的物体。有1克、2克和5克的砝码各一个,选其中的一个或几个放在天平的一端,能在天平上直接称出7种不同质量的物体。15.12每一个书包可以搭配4个不同的文具盒,有3种不同的书包,就有(3×4)种搭配方式,可以用字母表示书包和文具盒,列举出所有的搭配方法。3种不同的书包用字母A、B、C表示;4种不同的文具盒a、b、c、d表示。搭配方式:Aa、Ab、Ac、Ad;Ba、Bb、Bc、Bd;Ca、Cb、Cc、Cd;3×4=12(种)所以,妈要给文文买一个书包和一个文具盒,一共有12种不同的买法。16.7分订阅1种,订阅2种,订阅3种进行讨论,求出每种的各有几种订法,再相加即可求解。①订阅1种时,可以是任意1种,有3种方法;②订阅2种时,是从三种中任选2种,共有3种方法;③订阅3种时就是3份杂志都订阅,有1种方法;共有:3+3+1=6+1=7(种)所以,订阅以下杂志:《科学世界》《七彩文学》《数学乐园》。如果最少订阅1本,最多订阅3本,有7种不同的订阅方法。17. 3 2(1)有3支足球队参加比赛,每两个队都比赛一场,即每支球队都要与其它三支球队比赛一场,每支球队要赛三场,所有球队要参赛3×2=6(场),由于比赛是在两队之间进行的,所以共比赛6÷2=3(场)。(2)淘汰赛的规则是:每场比赛淘汰一队,直到决出冠军。如果采用淘汰赛制,第一场:任意两队比赛,胜者晋级,败者淘汰。 第二场:第一场的胜者与剩余一队比赛,决出冠军。 总共需要2场比赛。根据分析可知:3×(3-1)÷2=3×2÷2=3(场)有3支球队要举行足球比赛,规定每两支球队之间都要比赛一场,一共要比赛(3)场;如果采用淘汰制,最后决出冠军,一共要赛(2)场。18. 6 12小明、小红、小华、小丽4个好朋友互相问候,通过列举法分析:小明和小红、小明和小华、小明和小丽、小红和小华、小红和小丽、小华和小丽,依次为3次,2次,1次,所以一共要通6次电话。他们4个人互相发一条微信问候,小明要给小红、小华、小丽发微信,共3条;小红要给小明、小华、小丽发微信,共3条;小华要给小明、小红、小丽发微信,共3条;小丽要给小明、小红、小华发微信,共3条,所以总共4×3=12条。4人互相通话,两人通一次即可,按顺序累加3+2+1=6次,所以小明、小红、小华、小丽4个好朋友互相问候,他们一共要通6次电话;4人互相发微信,有发送接收顺序,即每人给另外3人发,4人就共发4×3=12条,所以他们4个人互相发一条微信问候,一共要发12条。19.31根据题意,现有32名同学参加单打比赛,比赛以单场淘汰制,即每场比赛淘汰1人;32人两两比赛,第一轮,进行32÷2=16场,剩下16人;第二轮,进行16÷2=8场,剩下8人;第三轮,进行8÷2=4场,剩下4人;第四轮,进行4÷2=2场,剩下2人;第五轮,进行2÷2=1场,剩下1人,即可产生冠军,一共进行了(16+8+4+2+1)场比赛。32÷2=16(场)16÷2=8(场)8÷2=4(场)4÷2=2(场)2÷2=1(场)16+8+4+2+1=31(场)一共要进行31场比赛才能产生单打冠军。20.72要选出其中4个盒子,并把盒子里的珍珠平分给三个女儿,那就要求选出的三个数之和是3的倍数,根据除以3的余数对0~9这9个数进行分类,根据余数的特征进行求解。除以3余0:0,3,6,9;除以3余1:1,4,7;除以3余2:2,5,8;从除以3余1这一组中选三个,再从除以3余0这一组中选一个:1×4=4(种)从除以3余2这一组中选三个,再从除以3余0这一组中选一个:1×4=4(种)从除以3余1这一组中选2个,再从除以3余2这一组中选二个:3×3=9(种)从除以3余0这一组中选二个,从除以3余1这一组中选一个,从除以3余2这一组中选一个:6×3×3=54(种)从除以3余0这一组中选四个:1种选法;4+4+9+54+1=72(种)因此,商人有72种不同的选法。本题考查的是计数问题,加乘原理是计数中最常用的方法。21.1.16;20;880(1)根据减法的性质a-b-c=a-(b+c)进行简算;(2)根据除法的性质a÷(b×c)=a÷b÷c进行简算;(3)根据乘法分配律a×c+b×c=(a+b)×c进行简算。(1)7.16-5.49-0.51=7.16-(5.49+0.51)=7.16-6=1.16(2)5.4÷(0.9×0.3)=5.4÷0.9÷0.3=6÷0.3=20(3)8.8×101-8.8=8.8×101-8.8×1=8.8×(101-1)=8.8×100=88022.0.49;11;0.0480.35;0.08;3略23.6种由题意可知,这个公园有3个入口和2个出口,根据乘法原理:做一件事,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事共有N=×××…×种不同的方法 ,据此解答即可。3×2=6(种)答:小明一家从进入公园到走出公园,一共有6种走法。24.10种;6种先给2种文艺类社团和3种体育类社团编号,然后用列举法把所有符合要求的组合列举出来,再数一数,即可得解。设2种文艺类社团的编号为A、B;3种体育类社团的编号为C、D、E;任意选择2种社团,可以是:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,一共有10种不同的选法。从文艺类社团和体育类社团中各选1种,可以是:AC、AD、AE、BC、BD、BE,一共有6种不同的选法。答:他有10种不同的选法,如果他想从文艺类社团和体育类社团中各选1种,有6种不同的选法。25.表见详解(1)5 (2)长和宽越接近,面积越大(答案不唯一)(1)用20根长度均是1厘米的小棒,摆成一个长方形(或正方形),即长方形(或正方形)的周长是20厘米;根据长方形的特点可知,长方形的长与宽的和是20÷2=10厘米,则从9开始作为长方形的长,依次减少,并求得相应的长方形的宽,据此填表得出一共有多少种摆法;再根据长方形的面积=长×宽求得各种摆法的面积;(2)根据表格发现,当长与宽越接近时,面积就越大(答案不唯一)。长/厘米 9 8 7 6 5宽/厘米 1 2 3 4 5面积/平方厘米 9 16 21 24 25(1)一共有5种不同的摆法。(2)观察这些图形的面积,你的发现是:长和宽越接近,面积越大(答案不唯一)。26.4种;租7条大船和1条小船用列表法进行解答,根据大船数量×大船坐的人数+小船数量×小船坐的人数=能坐的总人数,用划船的人数除以每只大船能坐的人数,有余数时采用进一法,即46÷6≈8(只),即大船数量从8只开始,逐步减少大船数量,增加小船数量,保证能坐的人数大于或等于46人,列举出所有的情况,找出没有空位子的租法,再根据大船数量×租金+小船数量×租金=需要的钱数,求出所有没有空位子的租法的钱数,比较即可。大船数量 小船数量 乘坐人数 有无空位8 0 48 有7 1 46 无6 3 48 有5 4 46 无4 6 48 有3 7 46 无2 9 48 有1 10 46 无0 12 48 有7×20+1×15=140+15=155(元)5×20+4×15=100+60=160(元)3×20+7×15=60+105=165(元)1×20+10×15=20+150=170(元)155<160<165<170答:有4种不同的租法,租7条大船和1条小船最经济。27.6种由题意得,袋中的玻璃珠子规格相同、颜色不同,且数量足够多。所以任取两颗的可能组合可以通过列举法找到。按照颜色相同和颜色不同的顺序列举即可。由题意得,小华任取两颗,可能的取法有以下几种,颜色相同:红和红,黄和黄,蓝和蓝颜色不同:红和黄,红和蓝,黄和蓝所以,一共有6种不同的取法。28.5种根据题意,5元人民币的数量×5+2元人民币的数量×2=47,根据47÷5=9(张)……2(元)可知5元的人民币最多只能有9张,据此逐渐减少5元人民币的数量,同时增加2元人民币的数量,直到找出所有总金额等于47元的组合方式即可。47÷5=9(张)……2(元)拿9张5元1张2元:5×9+2×1=45+2=47(元)拿7张5元6张2元:5×7+2×6=35+12=47(元)拿5张5元11张2元:5×5+2×11=25+22=47(元)拿3张5元16张2元:5×3+2×16=15+32=47(元)拿1张5元21张2元:5×1+2×21=5+42=47(元)答:有5种不同的拿法。29.(1)6种;(2)最少53.6元;最多101.4元(1)买一个花盆有3种选法,买一个洒水壶有2种选法,最后用乘法求出买一个花盆和一个洒水壶所有不同的选法;(2)需要钱数最少时买单价最便宜的花盆和洒水壶,需要钱数最多时买单价最贵的花盆和洒水壶,最后根据“总价=单价×数量”求出需要花的总钱数,据此解答。(1)3×2=6(种)答:一共有6种不同的选法。(2)最少:5.2×8+12=41.6+12=53.6(元)最多:10.8×8+15=86.4+15=101.4(元)答:最少要花53.6元,最多要花101.4元。 展开更多...... 收起↑ 资源列表 第七单元 解决问题的策略 单元测试卷·基础卷 试卷分析.pptx 第七单元 解决问题的策略 单元测试卷·基础卷.docx 第七单元 解决问题的策略 单元测试卷·基础卷(解析卷).docx