3.3轴对称与坐标变化 同步练习(含答案)

资源下载
  1. 二一教育资源

3.3轴对称与坐标变化 同步练习(含答案)

资源简介

中小学教育资源及组卷应用平台
3 轴对称与坐标变化
一、单选题
1.已知点与点关于x轴对称,则的值为(  )
A.6 B. C. D.
2.在直角坐标系中,将点A(-1,-2)向右平移3个单位得到点B,则点B关于x轴的对称点B'的坐标为(  )
A.(-3,-2) B.(2,2) C.(-2,2) D.(2,-2)
3.在平面直角坐标系中,点关于x轴对称的点为M,那么点M关于y轴的对称点N的坐标是(  )
A. B. C. D.
4.已知点与点关于y轴对称,那么的值为(  )
A.1 B.2 C. D.
5.如果点和点关于轴对称,则、的值分别为(  )
A., B.,
C., D.,
二、填空题
6.若点与点关于y轴对称,则的值为   .
7.已知点M(m,n)与点N(-2,-3)关于x轴对称,则m+n=   .
8.点 关于 轴的对称点的坐标为   .
9.若点关于轴的对称点是点,则   ,   .
10.已知点和点关于y轴对称,则   .
11.在平面直角坐标系中,点 和 关于   轴对称.
三、计算题
12.已知点与关于x轴对称,求的值.
13.如图,△ABC三个顶点的坐标分别为、、.
(1)若与△ABC关于y轴成轴对称,则三个顶点坐标分别为: , ;
(2)若P为y轴上一点,则的最小值为 ;
(3)计算的面积.
四、解答题
14.(1)若点,与关于x轴对称,求a、b的值;
(2)若点在第二象限,且到x轴和y轴距离相等,求点A坐标.
15.如图,在平面直角坐标系中,已知A(1,3),B(4,4),C(2,1),△ABC经过某种变换后得到△DEF.
(1)直接写出点D,E,F的坐标;
(2)观察变化前后对应点的坐标之间的关系,思考:若△ABC内任意一点M的坐标为(a,b),点M经过这种变换后得到点N,点N的坐标是什么?
(3)求△ABC的面积.
五、综合题
16.如图,在直角坐标系中,A、B、C、D各点的坐标分别为(﹣7,7)、(﹣7,1)、(﹣3,1)、
(﹣1,4).
(1)在给出的图形中,画出四边形ABCD关于y轴对称的四边形A1B1C1D1; (不写作法)
(2)写出点A1和C1的坐标;
(3)求四边形A1B1C1D1的面积.
17.在边长为1的小正方形网格中,△AOB的顶点均在格点上.
(1)B点关于y轴的对称点坐标为   ;
(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,A1的坐标为   .
18.△ABC在直角坐标系内的位置如图所示.
(1)在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称;
(2)求△ABC的面积.
答案解析部分
1.【答案】B
【知识点】坐标与图形变化﹣对称
2.【答案】B
【知识点】关于坐标轴对称的点的坐标特征;用坐标表示平移
3.【答案】D
【知识点】坐标与图形变化﹣对称
4.【答案】A
【知识点】关于坐标轴对称的点的坐标特征
5.【答案】B
【知识点】关于坐标轴对称的点的坐标特征
6.【答案】
【知识点】坐标与图形变化﹣对称;求代数式的值-直接代入求值
7.【答案】1
【知识点】关于坐标轴对称的点的坐标特征
8.【答案】
【知识点】关于坐标轴对称的点的坐标特征
9.【答案】;5
【知识点】轴对称的性质;坐标与图形变化﹣对称
10.【答案】3
【知识点】坐标与图形变化﹣对称
11.【答案】x
【知识点】关于坐标轴对称的点的坐标特征
12.【答案】
【知识点】坐标与图形变化﹣对称;求代数式的值-直接代入求值
13.【答案】(1),
(2)
(3)
【知识点】两点之间线段最短;坐标与图形变化﹣对称;作图﹣轴对称
14.【答案】(1);(2)
【知识点】点的坐标;坐标与图形变化﹣对称
15.【答案】(1)D(-1,3),E(-4,4 ),F(-2,1 )
(2)(-a,b)
(3)
【知识点】点的坐标;坐标与图形性质;坐标与图形变化﹣对称
16.【答案】(1)解:
(2)解:由(1)可得
(3)解: 四边形
【知识点】关于坐标轴对称的点的坐标特征;作图﹣轴对称
17.【答案】(1)(-3,2)
(2)解:如图所示,将A向左移三个格得到A1,O向左平移三个单位得到O1,B向左平移三个单位得到B1,再连线得到△A1O1B1.
(3)(-2,3).
【知识点】关于坐标轴对称的点的坐标特征;坐标与图形变化﹣平移
18.【答案】(1)解:如图所示:△A1B1C1,即为所求;
(2)解:△ABC的面积为:4×3﹣ ×1×4﹣ ×3×2﹣ ×2×2=5
【知识点】点的坐标;三角形的面积;关于坐标轴对称的点的坐标特征
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览