第二章 有理数及其运算 复习课(含答案) 2025-2026学年数学北师大版(2024)七年级上册

资源下载
  1. 二一教育资源

第二章 有理数及其运算 复习课(含答案) 2025-2026学年数学北师大版(2024)七年级上册

资源简介

第二章 有理数及其运算 复习课
复习目标
1.知道正数、负数、有理数、相反数、绝对值、数轴等概念.
2.能用数轴上的点表示有理数,并会比较有理数的大小.
3.知道有理数的运算律,并会运用运算律简化运算.
重点
熟练进行有理数的加、减、乘、除、乘方及简单的混合运算,并能运用运算律简化运算,运用有理数及其运算解决简单的实际问题.
【体系构建】
请仔细阅读本章的知识网络图,并完成填空.
【专题复习】
专题一:抓住统一标准,对有理数进行分类
例1 请把下列各数填入它所属于的集合的大括号里.
1,0.070 8,-700,-3.88,0,3.14,-,0..
正有理数集合:{    …}.
负整数集合:{    …}.
正分数集合:{    …}.
非负整数集合:{    …}.
变式训练
1.下列各数中,既是分数,又是负数的是 (  )
A.2 B.    
C.-6 D.-0.25
2.2.,-0.010 010 001,π,-8,,15,300%,其中正整数有a个,有理数有b个,则a+b=    .
3.如图,A是整数集合,B是正数集合,C是分数集合,D是A和B的重叠部分,E是B和C的重叠部分.
(1)D是    集合,E是    集合.
(2)给出下列各数:10,-0.72,-2,0,-98,25,,6.3%,-3.14.请将它们填入图中相应的集合中去.
专题二:正确理解有理数有关的概念
例2 若a,b互为相反数,c,d互为倒数,|m|=2,求+m-3cd的值.
变式训练
1.据文化和旅游部数据中心统计,2024年“五一”假期,全国国内旅游出游合计295 000 000人次.数据295 000 000用科学记数法表示为 (  )
A.2.95×108 B.29.5×108
C.0.295×109 D.2.95×109
2.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是 (  )
A.b>a>0 B.a>b>0
C.a>0>b D.b>0>a
3.--的相反数是    .
4.若(x-2 024)2+|y+2 023|=0,则x+y的值为    .
5.已知甲数的绝对值是乙数绝对值的2倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离是9,求这两个数.若数轴上表示这两数的点位于原点同侧,求这两个数.
专题三:灵活运用有理数运算法则和运算律
例3 计算:(-3)×-+0.25×24.5--5×.
变式训练
1.计算:1--×-1.
2.计算:+++…++.
专题四:与有理数相关的应用
例4 某厂一星期计划生产700个玩具,平均每天生产100个,由于各种原因每天实际生产量与计划量相比有出入,下表是某星期每天的生产情况(增产为正,减产为负,单位:个):
星期 一 二 三 四 五 六 日
产量 +10 -6 -8 +15 -12 +18 -9
(1)根据记录,求出前三天共生产玩具的个数.
(2)请问产量最多的一天比产量最少的一天多生产多少个
(3)该厂实行计件工资制,每生产一个玩具10元,若按星期计算,超额完成任务,超出部分每个12元;若未完成任务,生产出的玩具每个只能按8元发工资.那么该厂员工这一星期的工资总额是多少
变式训练
去年10月初,由于受台风影响,某地区的水位发生了变化,该区10月6日的水位是2.83米,由于各种原因,水位一度超过警戒线,下表是该区10月7日至12日的水位变化情况(单位:米).
日期 7 8 9 10 11 12
水位记录 +0.41 +0.09 -0.04 +0.06 -0.45 -0.75
注:规定水位比前一天上升用“+”表示,比前一天下降用“-”表示,不升不降用“0”表示.
(1)该区这6天内水位最高的一天是    ,实际水位是    米.
(2)与10月6日相比,10月12日的水位是上升了还是下降了,变化了多少米
    
    
 
参考答案
【体系构建】
a×10n 正 0 负 整 分 小 大 > < >
大 小
【专题复习】
专题一
例1 解:正有理数集合:{1,0.070 8,3.14,0.,…}.负整数集合:{-700,…}.正分数集合:{0.070 8,3.14,0.,…}.非负整数集合:{1,0,…}.
变式训练 1.D 2.8
3.解:(1)正整数;正分数.
(2)如图所示:
专题二
例2 解:因为a,b互为相反数,
所以a+b=0.因为c,d互为倒数,
所以cd=1.因为|m|=2,
所以m=±2.所以,原式=0+2-3=-1或原式=0-2-3=-5.
变式训练 1.A 2.C 3.
4.1
5.解:若在数轴上表示这两数的点位于原点的两侧,则这两个数到原点的距离分别是3和6,所以这两个数是-3, 6或-6,3.若在数轴上表示这两数的点位于原点的同侧,则这两个数到原点的距离分别是9和18,所以这两个数是-18,-9或18,9.
专题三
例3 解:原式=3×+×24.5+×
=×3+24.5+
=.
变式训练 1.解:原式=--×-
=×-+-×-+-×-
=-2+1+
=-.
2.解:原式=1-+-+-+…+-+-
=1-
=.
专题四
例4 解:(1)100×3+10-6-8=296(个),
所以前三天共生产296个.
(2)18-(-12)=18+12=30(个),
所以产量最多的一天比产量最少的一天多生产30个.
(3)这一周多生产的总个数是10-6-8+15-12+18-9=8(个),
10×700+12×8=7 096(元).
答:该厂工人这一周的工资总额是7 096元.
变式训练 解:(1)10日,3.35.
(2)0.41+0.09-0.04+0.06-0.45-0.75=-0.68(米).
答:与10月6日相比,10月12日的水位下降了0.68米.

展开更多......

收起↑

资源预览