资源简介 青岛版九年级上册数学1.3相似三角形的性质同步练习一、单选题1.在四边形中,,,.延长至点E,使.若,则的长为( )A. B.2 C. D.2.在△ABC中,点、分别在边、上,若,,,则的长为( )A. B. C. D.3.如图,在中,,点E为此三角形的重心,连接并延长交于点D,过点E作于点F,则的长为( )A. B. C. D.24.如图,在△ABC中,,点D为边的中点,点E在线段的延长线上,且.若,则的长为( )A.4 B.5 C.6 D.95.如图,,和分别是和的高,若,,则为( )A. B. C. D.6.如图,在△ABC中,,按如下作图:(1)以点B为圆心,适当长为半径作弧,分别交于点M,N;(2)分别以点M、N为圆心,大于的长为半径作弧,两弧在内部交于点P;(3)作射线交于点D.根据以上作图,判断下列结论正确的有( );;A. B. C. D.7.如图,在矩形中,,,点在线段上运动,连接,以为斜边作等腰,连接,则线段的最小值为( )A. B. C. D.8.如图,已知钝角,以顶点A为圆心,适当长为半径画弧,分别交于点M,N,再分别以点M,N为圆心,大于的长为半径画弧,两弧交于点D,作射线,过点D作于点C,过点D作,交于点B.若,,则的长为( ).A. B. C. D.59.如图,正方形的对角线与相交于点,的角平分线分别交、于、两点.若,则线段的长为( )A. B.1 C. D.10.如图1,等腰梯形纸片中,,,,且E点在上,.今以为摺线将C点向左摺后,C点恰落在上,如图2所示.若,,则图2的与的长度比为何( )A. B. C. D.二、填空题11.四边形中,点A在的垂直平分线上,,,若,,则线段的长为 .12.如图,在△ABC中,是边上的一点,若则的长为 .13.如图,把沿平移到的位置,它们重合部分的面积是面积的,若,则移动的距离 .14.在中,,的角平分线分别交线段、中线于点、,则三角形与三角形的面积之比为 .15.如图,已知梯形,,对角线,相交于点O,与的面积之比为,若,则的长是 .三、解答题16.如图,在△ABC中,是边上的中线,点E在上(不与A,D重合),连接,并延长交于点F,.(1)求证:;(2)当时,求证:17.如图,点、分别在的边、上,且.(1)求证:;(2)已知,,,求的长.18.如图,△ABC的顶点A是线段的中点,,连接、,分别交、于M、N,连接,求证:.19.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片和中,.【初步感知】(1)如图1,连接,在纸片绕点 A 旋转过程中,试探究的值.【深入探究】(2)如图2,①尺规作图:作的中线,交于点 M(保留作图痕迹,不写作图过程);②在纸片绕点A旋转过程中,当点 D 恰好落在的中线的延长线上时,延长交于点F,求的长.【拓展延伸】(3)在纸片绕点A旋转过程中,试探究C,D,E三点能否构成直角三角形.若能,直接写出所有直角三角形的面积,若不能,请说明理由.试卷第1页,共3页试卷第1页,共3页《青岛版九年级上册数学1.3相似三角形的性质同步练习》参考答案题号 1 2 3 4 5 6 7 8 9 10答案 D B A C D D B A B B11.12.13.14./15.16.(1)证明:∵是边上的中线,∴,∵,∴,∴,∴,∵,∴;(2)解:∵,∴,∵,∴,即,∵,∴,∴,∵,∴,∴,∴,即.17.(1),,,.(2),,由,,可得,即,,.18.证明:点A是线段的中点,,∵,,,∴,,∴,∴.又∵,∴,∴,∴.19.解:(1)由勾股定理得:,由旋转知:,∵,∴,∴;(2)①中线作图如下:②如图,连接,过点A作于点N,过点E作于点G;∵为直角三角形斜边上的中线,∴,∴,由旋转知,∴,∴,∴,∴,∴,由(1)知,,∴,由旋转知,∵,∴,由勾股定理得,∵∴;∵,∴,设,则,∴,在中,由勾股定理得:,即,解得:,当时,,则;当时,,则,不合题意;∴的长为;(3)解:C,D,E三点能构成直角三角形;如图,当重合时,此时,则是直角三角形,∵,∴;如图,当在的延长线上时,此时,则是直角三角形,∵,∴;如图,当,则是直角三角形,过点A作于点Q,∵,∴,∵,∴四边形是矩形,∴,∴,∴;如图,当时,则是直角三角形,过点A作于点Q,交于点N,设,∴,∴,∴,,∵,∴,∴,∴,∴,在中,由勾股定理得:,即,解得:,∴;综上,直角三角形的面积为4或16或12或.答案第1页,共2页答案第1页,共2页 展开更多...... 收起↑ 资源预览