华师大版七年级数学上册第3章 图形的初步认识 自我评估检测卷(二)(含答案)

资源下载
  1. 二一教育资源

华师大版七年级数学上册第3章 图形的初步认识 自我评估检测卷(二)(含答案)

资源简介

第3章 图形的初步认识自我评估(二)
(本试卷满分100分)
一、选择题(本大题共10小题,每小题3分,共30分)
1. 下列立体图形中,棱锥是(  )
A B C D
2. 已知∠1=70°,∠2与∠1互为余角,则∠2=(  )
A. 10° B. 20° C. 30° D. 110°
3. 如图1,B,C,D三点在直线l上,点A在直线l外,下列说法错误的是(  )
A. 直线BD和直线CD表示的是同一条直线
B. 射线BD和射线CD表示的是同一条射线
C. ∠1和∠ABC表示的是同一个角
D. ∠BAD=∠BAC+∠CAD
图1 图2
4. 如图2,从上面观察这个立体图形得到的平面图形是(  )
A B C D
5. 如图3所示,用直尺度量线段AB,可以读出AB的长度为( )
A. 6 cm B. 7 cm C. 8 cm D. 9 cm
图3
6. 如图4,对于生活中这两个现象的解释,正确的是(  )
A. 均用“两点之间,线段最短”来解释
B. 均用“两点确定一条直线”来解释
C. 现象1用“两点之间,线段最短”来解释,现象2用“两点确定一条直线”来解释
D. 现象1用“两点确定一条直线”来解释,现象2用“两点之间,线段最短”来解释
图4 图5
7. 如图5,OA的方向是北偏东20°,OB的方向是北偏西35°,OA平分∠BOC,则OC的方向是(  )
A. 北偏东35° B. 北偏东45° C. 北偏东55° D. 北偏东75°
8. 如图6,点M,N在线段AB上,已知MB=8 cm,NB=18 cm,且点N是AM的中点,则AB的长为(  )
A. 25 cm B. 27 cm C. 28 cm D. 30 cm
图6 图7 图8
9. 如图7,在有序号的小正方形中选出一个,它与图中五个有阴影的小正方形组合后,不能构成正方体的表面展开图的是(  )
A. ① B. ② C. ③ D. ④
10. 如图8,∠BOC在∠AOD的内部,且∠BOC=x°,∠AOD=y°,则图中所有角的度数之和为(注:图中所有角均指小于180°的角)(  )
A. x°+3y° B. 2x°+2y° C. 3x°+y° D. 3y°-x°
二、填空题(本大题共6小题,每小题3分,共18分)
11. 计算:57.32°= ° ′ ″.
12. 一个立体图形的表面展开图如图9所示,则这个立体图形是 .
图9 图10
13. 如图10所示,由正方形组成的网格中,点A,B,C,D,O是网格线交点,那么∠AOB与∠COD的大小关系是∠AOB ∠COD.(填“>”“<”或“=”)
14. 若过多边形的一个顶点可以引4条对角线,则这个多边形的边数是___________.
15. 如图11,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线有 条.
图11 图12
16. 如图12,一个正方体的六个面上分别写着六个连续的整数,且相对面上的两个整数的和都相等.将这个正方体放在桌面,以如图所示的方式滚动,每滚动90°算一次,请问滚动2023次后,正方体贴在桌面一面上的数字是 .
三、解答题(本大题共6小题,共52分)
17. (6分)已知∠α=76°,∠β=41°30′.
(1)求∠α的补角;
(2)求∠α的2倍与∠β的的差.
18. (6分)如图13,有A,B,C,D四种型号的铁皮,从中选两种,正好可以制作成一个无盖圆柱形水桶(不计接头).
(1)你认为可以选择哪两种型号的铁皮?
(2)所制作水桶的容积是多少?
A B C D
图13
19. (8分)如图14,已知线段a,b.
(1)用尺规作图法作线段OA,使得OA=3a-b;(不写作法,保留作图痕迹)
(2)若a=2,b=3,M是线段OA的中点,求线段OM的长.
图14
20.(10分)如图15是由几个完全相同的小正方体搭成的一个立体图形,每个小正方体的棱长均为1 cm.
(1)请画出从不同方向看该立体图形得到的平面图形;(在图16所提供的方格内涂上相应的阴影即可)
(2)请计算出该立体图形的体积;
(3)如果小明还想添加一些相同的小正方体,并保持从上面和左面看到的平面图形不变,最多可以再添 个小正方体.
图16
21. (10分)已知点B在线段AC上,点D在线段AB上.
(1)如图17-①,若AB=6 cm,BC=4 cm,D为线段AC的中点,求线段DB的长度;
(2)如图17-②,若BD=AB=CD,E为线段AB的中点,EC=12 cm,求线段AC的长度.
① ②
图17
22. (12分)如图18,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.
观察分析:
(1)如图18-①,若∠MOC=28°,则∠BON的度数为 ;
(2)将三角形MON绕点O旋转到如图18-②所示的位置,若∠BON=100°,求∠MOC的度数.
猜想探究:
(3)若将三角形MON绕点O旋转到如图18-③所示的位置,请你猜想∠BON和∠MOC之间的数量关系,并说明理由.
图18
附加题(20分,不计入总分)
【问题探究】
(1)如图,点C在线段AB上,M,N分别是AC,BC的中点.若AC=9 cm,CB=6 cm,求线段MN的长.
【方法迁移】
(2)已知点C在线段AB上,M,N分别是AC,BC的中点.若AC=a cm,CB=b cm,则线段MN的长为
cm.
【学以致用】
小明同学在解决问题“某校七年级(1)班延时服务统计情况如下,其中参加延时服务的女生是未参加延时服务的女生人数的2倍,参加延时服务的男生是全班男生人数的,若参加延时服务的男、女生共有m人,则该班共有学生多少人(用含m的式子表示)?”时,突然联想到上面的几何问题,请你将这个实际问题转化为几何模型,并求解.(建立几何模型就是画出相应的线段示意图,并分别注明相应线段的实际意义)
第3章 图形的初步认识自我评估(二)
答案速览
一、1. A 2. B 3. B 4. D 5. B 6. C 7. D 8. C 9. D 10. A
二、11. 57 19 12 12. 三棱柱 13. > 14.7 15. 3 16. 9
三、解答题见“答案详解”
答案详解
10. A 解析:∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠COD=(∠AOB+∠BOD)+(∠AOC+∠COD)+∠AOD+∠BOC=∠AOD+∠AOD+∠AOD+∠BOC=3∠AOD+∠BOC=3y°+x°.
16. 9 解析:由图可知,10和9相对,7和12相对,8和11相对,将正方体沿如图所示的顺时针方向滚动,每滚动90°算一次,正方体朝下一面的点数依次为10,7,9,12,且依次循环.因为2023÷4=505……3,所以滚动第2023次后,正方体贴在桌面一面的数字是9.
三、17. 解:(1)∠α的补角为180°-∠α=180°-76°=104°.
(2)2∠α-∠β=2×76°-×41°30′=152°-20°45′=131°15′.
18. 解:(1)因为圆柱侧面展开图的长等于其底面圆的周长,而直径为2的圆的周长为2π,所以选择B,C这两种型号的铁皮.
(2)所制作水桶的容积为π××4=4π.
19. 解:(1)如图1,线段OA即为所求.
图1
(2)因为a=2,b=3,所以OA=3a-b=3.
因为M是线段OA的中点,所以OM=OA=×3=.
20. 解:(1)如图2所示:
图2
(2)1×1×1×9=9(cm3).
答:该立体图形的体积是9 cm3.
(3)7
21. 解:(1)因为AC=AB+BC,AB=6 cm,BC=4 cm,所以AC=6+4=10(cm).
因为D为线段AC的中点,所以DC=AC=×10=5(cm).
所以DB=DC-BC=6-5=1(cm).
(2)设BD=x cm.因为BD=AB=CD,所以AB=4BD=4x cm,CD=3BD=3x cm.
所以BC=CD-BD=3x-x=2x cm.所以AC=AB+BC=4x+2x=6x cm.
因为E为线段AB的中点,所以BE=AB=×4x=2x cm.
所以EC=BE+BC=2x+2x=4x cm.
又EC=12 cm,所以4x=12,解得x=3.
所以AC=6x=6×3=18(cm).
22. 解:(1)56°
(2)因为∠BON=100°,所以∠AON=180°-∠BON=180°-100°=80°.
因为OC平分∠AON,所以∠CON=×∠AON=×80°=40°.
所以∠MOC=∠MON-∠CON=90°-40°=50°.
(3)∠BON=2∠MOC.理由如下:
因为OC平分∠AON,所以∠AOC=∠NOC.
因为∠MON=90°,所以∠AOC=∠NOC=90°-∠MOC.
所以∠BON=180°-2∠NOC=180°-2(90°-∠MOC)=2∠MOC,即∠BON=2∠MOC.
附加题
解:(1)因为M,N分别是AC,BC的中点,AC=9 cm,CB=6 cm,所以MC=AC=×9=4.5(cm),CN=BC=×6=3(cm).所以MN=MC+CN=4.5+3=7.5(cm).
(2)
(3)根据题意画出线段示意图如图所示,线段AB的长度表示未参加延时服务的女生人数,线段BC的长度表示参加延时服务的女生人数,线段CD的长度表示参加延时服务的男生人数,线段DE的长度表示未参加延时服务的男生人数.
由题意,知BC=2AB,即BC=AC.
又CD=CE,BC+CD=m,所以AC+CE=m.所以AC+CE=m,即AE=m.
所以该班共有学生m人.

展开更多......

收起↑

资源预览