湖北省恩施州2026届高三第一次质量监测暨9月起点考试 数学(PDF版,含答案)

资源下载
  1. 二一教育资源

湖北省恩施州2026届高三第一次质量监测暨9月起点考试 数学(PDF版,含答案)

资源简介

恩施州 2026届高三九月起点考试
数 学 试 卷
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有
一项是符合题目要求.
1. 设全集 U={0,1,2},A={0,1},B={1,2} ,则 CU A∩B =
A. {0,2} B. {1,2} C. {1} D. {0,1}
2. 已知 a= 1,x ,b= 2,-1 ,且 a b= 1 ,则 x=
A. - 2 B. - 1 C. 1 D. 2
3. 若复数 z 满足 i z= 1- i ,则 z =
A. 1 B. 2 C. 3 D. 2
4. 根据分类变量 x 与 y 的观测数据 , 计算得到 χ 2 ≈ 0 .837 , 依据小概率值 α =
0.1 x01=2.706 的独立性检验,则
A. 变量 x 与 y 不独立
B. 变量 x 与 y 独立
C. 变量 x 与 y 不独立,这个结论犯错误的概率不超过 0.1
D. 变量 x 与 y 独立,这个结论犯错误的概率不超过 0.1
5. 将函数 y= tan2x 的图象向左平移 m m>0 个单位后,所得的图象仍然关于原点对称,
则 m 的最小值为
A. π π12 B. 6 C.
π
4 D.
π
2
6. 已知 a<-1 ,当 x∈ 0,-a-1 时, f x = x2+ ax 1的最小值是 - 4 ,则 a=
A. - 2 B. - 2 C. - 32 D. -
5
4
7. 抛物线 y2= 2px p>0 与直线 x+ 2y- 5= 0 交于 A,B 两点, O 为坐标原点,且满足
OA⊥OB ,则 p=
A. 12 B. 1 C.
5 5
4 D. 2
8. 已知 a,b 为正实数,且 a≤ b+ 1 ,若 ab+ b2+ 1≥m a+b 恒成立,则 m 的最大值为
A. 2-1 B. 2+12 2 C. 2- 1 D.
2 2-1
2
·1·
二、选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符
合 题目要求. 全部选对的得 6 分, 部分选对的得部分分.
9. 已知 △ABC 的内角 A,B,C 所对的边分别为 a,b,c ,且 b2= ac ,则下列说法正确的是
A. B∈ 0, π 3
B. 当 B 最大时, sinC- sinB= sinBcosA 成立
C. 若 c= 2a ,则 C> 2π3
D. 若 C= π , 5-12 则 sinA= 2
10. 正方体 ABCD- A1B1C1D1 中, AB= 2,E 是棱 AB 上的动点 (含端点),则
A. A1E+ EC 的最小值为 2 6
B. 若 E 是棱 AB 2 6的中点,则点 A1 到平面 EB1D 的距离为 3
C. 记四棱锥 A1- ABCD 外接球的球心为 O ,则直线 OE 与平面 ABCD 所成角的正切
2
值的取值范围为 2 ,1

D. 若 M ,N 分别是棱 BC,CC1 的中点,则 NE 在 NM 上的投影向量的模长为定值
ex ,x≤011. 已知函数 f x = ,方程 f f x =m 有三个不同的实根 x1,xlnx+1,x>0 2,x3 ,则
A. 方程 f x =m 有两个不同的实根 B. m∈ 1,e
C. m- 1 是方程 f f x =m 的一个根 D. x1+ x 12+ x3< e+ e
三、填空题:本题共 3 小题, 每小题 5 分, 共 15 分.
12. 等差数列 an 的公差为 2,记前 n 项的和为 Sn ,若 S11= 11 ,则 a1= .
13. 平面直角坐标系中,直线 y= a 与 y 轴,曲线 y= 2lnx 的交点分别为 A,B ,若曲线 y=
2lnx 在 B 点处的切线交 y 轴于 C 点,则 AC = .
2 y2
14. x已知双曲线 C: 2 2 = 1 a>0,b>0 的左右焦点分别为 F1,F
2 2
a b 2
,直线 y= x- a +b
与 C 的右支交于 A,B 两点, P,Q 分别为 ΔAF1F2,ΔBF1F2 的内心,若 PQ = 2a ,则 C
的离心率为 .
·2·
四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.
15. (13 分)
如图,在直三棱柱 ABC- A1B 11C1 中, AA1= AB= 2 AC= 2,AB⊥ BC .
(1)求证: AB1⊥ 平面 A1BC ;
(2)求平面 A1BC 与平面 A1ACC1 的夹角的余弦值.
16. (15分)
如图,正方形 ABCD 的边长为 a1 ,取正方形 ABCD 各边的中点 E,F,G,H ,作第 2 个正方
形 EFGH ,其边长记为 a2 ; 然后再取正方形 EFGH 各边的中点 I,J ,K,L ,作第 3 个正方
形 IJKL ,其边长记为 a3 ; 依此方法一直继续下去,则记第 n n∈N 个正方形的边长为 an
. 2已知 a1= 2 ,bn=-log a
2
2 n .
(1)求 an,bn ;
(2)记第 n 个正方形区域未被第 n+ 1 个正方形区域覆盖的面积为 sn ,求使得 s1+ s2+
+s 2n≥ b 成立的 n 的最小值.n
·3·
17. (15 分)
2
已知函数 f x = 1- cosx- x2 ,x∈ -
π π
2 , 2 .
(1)判断函数 f x 的单调性;
(2)若 g x = x- ln cosx + π4 ,证明: g x > f x ;
n
(3) : cos 2证明 k > n- 3 n≥2,n∈N
.
k=2
18. (17 分)
已知一个大盒子内装有 6 个黄乒乓球, x 2≤x≤8 个白乒乓球.
(1) 现甲乙两人从盒中进行随机摸球游戏: 甲, 乙两人轮流交替摸球, 每次摸取一球, 甲先
摸球, 直到两人中有一人摸到白乒乓球时游戏结束, 每次摸出的小球均不再放回, 且甲乙摸
3
球相互独立. 已知乙在第 1 次恰好摸到白乒乓球的概率为 14 .
(i) 求 x 的值;
(ii) 记 ξ 表示游戏结束时甲摸球的次数,求 ξ 的分布列和期望.
(2)整理盒中小球时,需将所有乒乓球排成一排,要求每个黄乒乓球至少与另一个黄乒乓球
相邻. 1记不超过 3 个黄乒乓球排在一起的概率为 p ,若 p> 2 ,求 x 的最小值.
19. (17 分)
2
已知 O x为坐标原点,椭圆 Γ: 2 + y
2= 1 a>1 的右焦点为 F ,过 F 的直线 l 交 Γ 于 A,B
a
两点, P 是 Γ 1上一动点,且 △OPF 的面积最大值为 2 .
(1)求椭圆 Γ 的标准方程;
(2)若 C 是 Γ 上的另一点,满足四边形 OACB 为平行四边形.
(i)求平行四边形 OACB 的面积;
(ii) 设 C 关于 O 的对称点为 D ,求证: A,B,C,D 四点共圆.
·4·2026届高三“起点”考试
数学参考答案
(2025.09)
选择题:
题号 1 2 3 4 5 6 7 8 9 10 11
答案 A C B B C D D D AD BCD ACD
填空题:
3
12. 9 13. 2 14.
2
1.解析: A B 1 ,U 0,1,2 ,CU A B 0,2 .

2.解析:已知 a (1,x),b 2, 1 ,且 a b 1,则 x 1.
3.解析:因为 i z 1 i,所以 i z 1 i ,故 z 2.
4 2.解析: 0.837 x0.1 2.706,变量 x与 y相互独立.
5.解析:函数 y tan 2x的图象平移后得到 y tan 2x 2m ,其图象关于点 0,0 对称,
k
那么 2 0 2m k Z k, m k π Z ,所以m的最小值为 .
2 4 4
2
6.解析:a 1,0 x (a 1), f (x) x2 a a
1
ax (x )2 的最小值是 ,则:
2 4 4
2
若 (a 1) a ,即 2 a 1, f ( a a a 1 5 1) (1 ) 2 a 1 ,a ;
2 2 4 4 4
2
若 (a 1) a 5 ,即 a 2, f ( a a 1 ) ,a 1,不合题意舍去.故 a .
2 2 4 4 4
7.解析:将直线 x 2y 5代入抛物线方程,得到 y2 4py 10p 0,
设 A( 2y1 5, y1),B( 2y2 5, y2 ),因为OA OB,所以

OA OB ( 2y1 5)( 2y2 5) y1y2 5y1y2 10( y1 y2 ) 25 0,
5
即 50 p 40 p 25 0, p .
2
第 1 页 共 10 页
8 2.解析: ab b 1 m(a b) b(a b) 1 m(a b) m 1 b ,
a b
1
由题意可知 m的最大值 (b ) ,又 a b 1,所以
a b min
1
b 1 b 1 b 1 2 1 2 1 1 2 2 1 2 1.当且仅当 取
a b 2b 1 2 b 1 2 2 2 2
b
2
2
等号.
2 2 2 2 2
9.解析: cos B a c b a c ac ac 1
2ac 2ac 2ac 2 ,
B (0, ],A正确.
3
B 当 , sinC sin B 0,sin Bcos A 0,显然不成立,B错误.
3
2 2 2 2
若 c 2a , 则b 2a, cosC a b c a 2 1 2 ,C .C错误.
2ab 2 2a2 4 2 3
C , c2若 则 a2 a a a 5 1 sin A 5 1 b2 a2 ac , ( )2 1, ,sin A .D2 c c c 2 sinC 2
正确.
图 1 图 2 图 3
10.解析:如图 2, A1E EC A1C 4
2 22 2 5 ,A错误.
1
3V 2 2 2
V V ,d D A1EB 1 2 2 6如图 3, A EB D D A EB 1 1 1 1 S 1
,B正确.
DB E 2 3 2 31
2
四棱锥 A1 ABCD外接球的球心 O即为该正方体的外接球球心,直线 OE与面 ABCD所成
2
角的正切值的取值范围为[ ,1] ,C正确.
2

记向量 NE与 NM 的夹角为 , NE在 NM 上的投影向量的模长

| NE | cos | NE | N E NM NE NM ,以 A点为坐标原点,AB所在直线为 x轴,
| NE | | NM | | NM |
第 2 页 共 10 页
AD所在直线为 y轴,AA1所在直线为 z轴,建立空间直角坐标系,则 E(x,0,0),N(2,2,1),M(2,1,0),

NE (x 2, 2, 1),NM (0, 1, 1), NE N M 3 2 为定值,D正确.
| NM | 2
11.解析
因为 f (x)在 ( ,0]上单调递增,0 f (x) 1;在 (0, )上单调递增, f (x) R.结
合图象,方程 f ( f (x)) m有三个不同的实数解 方程 f (x) m有两个不同的实数解,A
正确.
设 a,b是方程 f (x) m a的两个不同实数解,且 a 0 b,那么 e m (0,1],
a lnm ( ,0]; lnb 1 m,b em 1 ( 1,1],B错误.
e
令 f (x) a或 f (x) b,此时 f ( f (x)) m.若 f (x) a ln x 1 a x e a 1 m ,
e
em 1
若 f (x) b, ln x 1 e b x e b 1 x或者 e b x ln b m 1,故m 1是方程
e
f ( f (x)) m的一个解,C正确.
em 1 em 1
x m e令 1 , x2 , x m 1 x
m e
3 ,则 1 x2 x3 m 1,记e e e e
m ee
m 1
g(m) m 1,在 (0,1]上单调递增,故g(m) g(1) e 1 1 e 1 e,D正确.
e e
12.解析
S 11(a1 a11)11 11a 11, a 1,a a 5d 1,a 9 .2 6 6 6 1 1
13.解析
a
A,B的坐标分别为 (0,a), (e 2 ,a),曲线 y 2ln x在 B点处的切线方程为
2 ay a a (x e 2 ),从而 C点的坐标为 (0,a 2),| AC | =2.
e 2
14.解析
如图, AF1F2内切圆与各边的切点为 H,I,J,
| AF1 | | AF2 | (| AH | | HF1 |) (| AI | | IF2 |) | HF1 | | IF2 | | F1J | | JF2 | 2a
第 3 页 共 10 页
设 J (m,0),则 m=a,即 P点的横坐标为 a.同理可得 Q点的横坐标为 a.PQ的直线方程

为 x=a.直线 AB的倾斜角为 ,
4
因为 PF2F
1
1 (
) 3 | PJ | | JF | tan 3 QF F 3 , 2 , 2 1 ,2 4 8 8 2 8 8
|QJ | | JF2 | tan

,所以
8
3 sin
sin 3 sin cos
| PQ | | JF2 | (tan tan ) (c a)( 8
8
3 ) (c a)(
8 8 ) (c a ) 2 2(c a)8 8 cos cos cos sin sin cos
8 8 8 8 8 8
由 | PQ | 2a,即 2a 2 2(c a) ,得 2c 3a,e c 3 .
a 2
解答题:
15.解析
(1)证明:在直三棱柱 ABC A1B1C1 中, AA1 平面 ABC, BC 平面 ABC,所以
AA1 BC .··························································································· ············2分
又 AB BC , AA1 AB A ,所以 BC 平面AA1B1B , AB 1 平面AA1B1B ,所以
BC AB 1.·······································································································4分
又 AA1 AB,所以四边形 AA1B1B为正方形,从而 A1B AB1.······················ ············5分
因为 A1B BC B,所以 AB1 平面 A1BC.·············································· ············6分
(2)以 B为坐标原点,BC所在直线为 x轴,AB所在直线为 y轴, BB1所在直线为 z轴,
建立空间直角坐标系,则 B(0,0,0), A(0, 2,0),C(2 3,0,0), A1(0, 2,2),B1(0,0,2) ,从而

AB1 (0, 2,2),AA1 (0,0, 2),AC (2 3, 2,0) .······································ ············8分

设平面 A1ACC1的法向量为 (x, y, z),则

AA1 0 2z 0
,不妨取 (1, 3,0) ····························· ············10分
AC 0 2 3x 2y 0

由(1)可知,平面 A1BC的法向量为 AB1 ,设平面 A1BC与平面 A1ACC1 的夹角为θ,

cos | A B则 1 | 2 3 6 .··································································13分
| | | AB1 | 2 2 2 4
第 4 页 共 10 页
法二:过 B1作 A1C1的垂线,垂足为 E,连接 AE,
平面A1B1C1 平面AA1C1C , B1E A1C1 , B1E 平面ACC1A1 ,
由(1)知, AB1 平面A1BC, AB1E的余弦值即为所求.
AB E AB 2 2 2 2 2在 1 中, 1 AB BB1 8 AE A1E AA
2
1 5, ,
A
EB 1
B1 C1B1
1 3 ,设平面 A1BC与平面 A1ACCAC 1
的夹角为 , AB1E ,则
1 1
cos B E 3 6 1 .
AB1 2 2 4
(其他方法酌情给分)
a
16.解析(1)由题意, ( n )2 (a n )2 a2n 1,···························································2 分2 2
a 2 2 2 n即 n 1 an , a1 ,所以 an ( ) . ········································ ············4分2 2 2
a2 1n ( )
n 2
,bn log2 an n. n N ···························································6分2
n n 1 n 1
(2)由题意, sn a
2
n a
2 1 1 1
n 1 , ····························· ············8分
2 2 2
n 1
s1 s2 sn a
2 a 2 a 2 a 2 2 2 2 2 1 1 1 2 2 3 an an 1 a1 an 1 ,····· ············9分2 2
1 1
n 1
2
2 2
≥ ,
n
2 n 1 1 1 0 ················································································ ············10分n 2 2
2 1 n 1 1
设 f n 则 f n 为单调递减函数,··················································12分n 2 2 ,
且 f 5 1 1 0 ·············································································· ············13分
64 10
f 4 1 0 ························································································ ············14分
32
又 n N , n≥5
n的最小值是 5.·································································································15 分
第 5 页 共 10 页
17.解析:(1) f x sin x x,f x cos x 1 0.·········································2分
f x 在 , 上单调递减.所以 x 2 2 0, , f
x f 0 0; x ,02 2 ,
f x 0.···························································································· ············3分
f x ,0 f x 故 在 单调递增, 在 0, 单调递减.································ ············4分
2 2
(2)据(1)可知, f x f (0) 0恒成立.················································ ············5分
g x 1 sin x 1 tan x,··············································································6分
cos x
g x , 在 上单调递减,在 , 上单调递增;························· ············8分
2 4 4 2
g x g 1
ln 2 1 , g x ln 2 0,
4 2 2
则 g x f x 成立.················································································ ············10分
法二:要证 g x f x ,即证 g x f x 0
令m x ln x x 1 m x 1 1 1 x ,
x x
当 x 1时m x 0 ,函数m x 在 x (1, )上单调递减,
当 x 1时,m x 0,函数m x 在 x (0,1)上单调递增,
m 1 0 m x 0,即 ln x x 1.
令 h x g(x) f (x) x ln(cos x) cos x 1 x2 1 ,
2 4
1 2
即 h x x x cosx ln(cosx ) 1 ,
2 4
1 y 1 12 ≥ ≥-
令 y1 x ,则 1 1 2,根据 ln x x 1, cos x ln(cos x)≥12 4


2
1
h(x) 0, g x f x 成立.
2 4
2 2
(3) 据(1 x)可知, f x 1 cos x 0 cos x 1 x ,··················· ············11分
2 2
2 2 2
令 x ,则cos 1 2 ,······································································ ············12分n n n
第 6 页 共 10 页

cos 2 2 1 2 1
2
1 2 1 1

n 2,n N
*
.···················· ············13分n n n 1 n n 1 n
n
cos 2 cos1 cos 2 cos 2 cos 2 cos 2 ,
k 2 k 3 4 5 n
cos1 2 cos 1 2 1 1 2 , cos 1 2
1 1 2 1 1


, , cos 1 2

2 1 2

3 2 3 n n 1 n
相加可得: cos1 cos
2
cos 2 n 1 2 1 1 n 3
2
,·············· ············14分
3 n n n
2 2 n 2 n 2
因为 n 2,则 0, n 3 n 3,所以 cos n 3,故n n k cos n 3对k 2 k 2 k
n 2,n N*恒成立. ············································································· ············15分
18.解析
C1C1 3
(1)(ⅰ)由题意,乙第一次恰好摸到白球的概率为 6 x1 1 ,·················· ·········· 2分C6 xC5 x 14
2
即 x 17x 30 0,解得 x 2或 x 15.················································· ············4分
因为 2 x 8,所以 x 2 .········································································ ············5分
(ⅱ)根据游戏规则, 的取值可能为 1,2,3,4.················································· ············6分
1 1 1
P( 1) C2 C6 C2 1 3 13 1 1 1 ;······················································· ············7分C8 C8 C7 4 14 28
P( 2) C
2 C1 C 36 2 6 C
1
2
5 1 9
2 1 3 1 ;·····························································8分C8 C6 C8 C5 28 7 28
C 4 1 5 1P( 3) 6 C2 C6 C2 3 1 5 4 1 5 1 ;··············································· ············9分C8 C4 C8 C3 28 14 28
P( C
6 1
4) 6 C2 16 1 ;··········································································· ············10分C8 C2 28
所以 的分布列为
1 2 3 4
13 9 5 1
P
28 28 28 28
第 7 页 共 10 页
E 1 13 2 9 3 5 4 1 25 .················································· ············11分
28 28 28 28 14
(2)整理乒乓球时,要使得至少 2个黄球相邻,则有“黄黄-黄黄-黄黄”,“黄黄黄-黄
黄黄”,“黄黄-黄黄黄黄”,“黄黄黄黄-黄黄”,“黄黄黄黄黄黄”5种情况.
可以先排列白球,通过插空法,让黄球排列在白球与白球之间的空位上.所以“黄黄-黄黄
3
-黄黄”有Cx 1种排法;··········································································· ············12分
2 2
“黄黄黄-黄黄黄”,“黄黄-黄黄黄黄”,“黄黄黄黄-黄黄”均有Cx 1种排法,总共3Cx 1
种;······································································································· ············13分
1
“黄黄黄黄黄黄”有Cx 1种排法.································································· ············14分
不超过 3个黄球在一起的情况只能为“黄黄-黄黄-黄黄”与“黄黄黄-黄黄黄”两种情况,
C 3 C 2 x2 2x 1
所以 p x 1 x 1 > ,··········································· ············16分
C 3 2x 1 3Cx 1 C
1 2
x 1 x 8x 6 2
2
即有 x 4x 6>0,解得 x>2 10或 x<2 10(舍去),所以 x的最小值为 6.·········17分
19.解析
1 1
1 2 2( )当 P在短轴顶点时 S OFP 最大,此时 S OFP a 1 ,得 a 2 ······ ············2 分2 2
x2 2
所以椭圆方程为: y 1 ···································································· ············4 分
2
(2)(i)由题意可得,直线 l的斜率存在,设 A(x1, y1),B(x2 , y2 ),直线 l的斜率为 k.
x2
AB 2 2 2 2 2直线 的方程为 y k (x 1),代入 y 1,得 (2k 1)x 4k x 2k 2 0 .····· 5分2
2 2
16k 4其中 4(2k 2 1)(2k 2 2) 8k 2 8 0 x 4k 2k 2 , 1 x2 2 ,x1x2k 1 2

2k 2 1
y1 y2 k (x x ) 2k
2k
1 2 2 ,························································ ············6分2k 1
4k 2 2k 2 1
从而C( 2 , 2 ) .因为 C点在椭圆上,代入椭圆方程解得 k ,·····················7分2k 1 2k 1 2
1
所以 x1 x2 1, x1x2 .········································································ ············8 分2
| AB | 1 k 2 | x1 x2 | 1 k
2 (x x )21 2 4x1x2 ,又点 O 到直线 AB 的距离为
d | k | ,·····································································································9 分
1 k 2
第 8 页 共 10 页
6
平行四边形OACB的面积 S | AB | d | k | (x 21 x2) 4x1x2 .···························10 分2
(其他方法酌情给分)
(ii)由(i)可知C(1, k),C关于 O的对称点为D( 1,k),A(x1,k(x1 1)),B(x2 ,k(x2 1)),
因为 x1 x
1
2 1, x1x2 ,2

即 A(x1, kx2 ),B(x2 , kx1) .CA (x1 1,k kx2 ) ( x2 ,kx1),CB ( x1,kx2 ) ,

所以CA CB (1 k 2)x1x
3
2 ,····························································· ············12 分4

|CA | |CB | x 2 k 22 x
2 x 2 k 2x 2 (1 k 4)x 2x 2 k 2(x 4 x 4 5 1 41 1 2 1 2 1 2 ) (x1 x
4
16 2 2
)

又DA (x1 1, k (x2 1)),DB (x2 1, k (x1 1)) ,

2 9
所以DA DB (1 k )(x1 1)(x2 1) ,······························································13 分4

| DA | | DB | (x1 1)
2 k 2(x2 1)
2 (x2 1)
2 k 2(x1 1)
2 45 1 ((x1 1)
4 (x 1) 4)
16 2 2
x x 1, x x 1 x 3 1, x 1 3根据 1 2 1 2 ,不妨设 1 2 2 2 2
2 2 4 4
计算可得 (1 x1) 3x1 , (1 x1) 9x1 , (1 x2)
2 3x2 42 , (1 x2) 9x
4
2 ,······················15 分

所以 | DA | | DB | 3 |CA | |CB |, cos CA,CB CA CB cos DA,DB ,
|CA | |CB |
所以 ACB ADB .·····················································································16 分
根据对角互补的四边形为圆的内接四边形,可知 A,B,C,D四点共圆.·····································17 分
法二:曲线系解法
由(1)(2)得 lAB : y k(x 1)即 kx
1
y k 0, lCD : y x即 x 2ky 0,2k
过 A,B,C,D 1 2 2的二次曲线系为 x y 1 (kx y k )(x 2ky) 0, R ,
2
x2 , y2 , xy 1 2的系数依次为 k,1 2 k, (2k 1) ,
2
(2) k 2 1由 得 , xy的系数 (2k 2 1) 0
2
1 1 1 2
又令 k 1 2 k ,得 k , , 存在.
2 6 6k 6
第 9 页 共 10 页
A,B,C,D四点共圆.
注:曲线系设法不同, 的取值不同,因此,只需 有解即可.
第 10 页 共 10 页

展开更多......

收起↑

资源列表