资源简介 恩施州 2026届高三九月起点考试数 学 试 卷一、选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一项是符合题目要求.1. 设全集 U={0,1,2},A={0,1},B={1,2} ,则 CU A∩B =A. {0,2} B. {1,2} C. {1} D. {0,1}2. 已知 a= 1,x ,b= 2,-1 ,且 a b= 1 ,则 x=A. - 2 B. - 1 C. 1 D. 23. 若复数 z 满足 i z= 1- i ,则 z =A. 1 B. 2 C. 3 D. 24. 根据分类变量 x 与 y 的观测数据 , 计算得到 χ 2 ≈ 0 .837 , 依据小概率值 α =0.1 x01=2.706 的独立性检验,则A. 变量 x 与 y 不独立B. 变量 x 与 y 独立C. 变量 x 与 y 不独立,这个结论犯错误的概率不超过 0.1D. 变量 x 与 y 独立,这个结论犯错误的概率不超过 0.15. 将函数 y= tan2x 的图象向左平移 m m>0 个单位后,所得的图象仍然关于原点对称,则 m 的最小值为A. π π12 B. 6 C.π4 D.π26. 已知 a<-1 ,当 x∈ 0,-a-1 时, f x = x2+ ax 1的最小值是 - 4 ,则 a=A. - 2 B. - 2 C. - 32 D. -547. 抛物线 y2= 2px p>0 与直线 x+ 2y- 5= 0 交于 A,B 两点, O 为坐标原点,且满足OA⊥OB ,则 p=A. 12 B. 1 C.5 54 D. 28. 已知 a,b 为正实数,且 a≤ b+ 1 ,若 ab+ b2+ 1≥m a+b 恒成立,则 m 的最大值为A. 2-1 B. 2+12 2 C. 2- 1 D.2 2-12·1·二、选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的选项中,有多项符合 题目要求. 全部选对的得 6 分, 部分选对的得部分分.9. 已知 △ABC 的内角 A,B,C 所对的边分别为 a,b,c ,且 b2= ac ,则下列说法正确的是A. B∈ 0, π 3 B. 当 B 最大时, sinC- sinB= sinBcosA 成立C. 若 c= 2a ,则 C> 2π3D. 若 C= π , 5-12 则 sinA= 210. 正方体 ABCD- A1B1C1D1 中, AB= 2,E 是棱 AB 上的动点 (含端点),则A. A1E+ EC 的最小值为 2 6B. 若 E 是棱 AB 2 6的中点,则点 A1 到平面 EB1D 的距离为 3C. 记四棱锥 A1- ABCD 外接球的球心为 O ,则直线 OE 与平面 ABCD 所成角的正切2值的取值范围为 2 ,1 D. 若 M ,N 分别是棱 BC,CC1 的中点,则 NE 在 NM 上的投影向量的模长为定值ex ,x≤011. 已知函数 f x = ,方程 f f x =m 有三个不同的实根 x1,xlnx+1,x>0 2,x3 ,则A. 方程 f x =m 有两个不同的实根 B. m∈ 1,e C. m- 1 是方程 f f x =m 的一个根 D. x1+ x 12+ x3< e+ e三、填空题:本题共 3 小题, 每小题 5 分, 共 15 分.12. 等差数列 an 的公差为 2,记前 n 项的和为 Sn ,若 S11= 11 ,则 a1= .13. 平面直角坐标系中,直线 y= a 与 y 轴,曲线 y= 2lnx 的交点分别为 A,B ,若曲线 y=2lnx 在 B 点处的切线交 y 轴于 C 点,则 AC = .2 y214. x已知双曲线 C: 2 2 = 1 a>0,b>0 的左右焦点分别为 F1,F2 2a b 2,直线 y= x- a +b与 C 的右支交于 A,B 两点, P,Q 分别为 ΔAF1F2,ΔBF1F2 的内心,若 PQ = 2a ,则 C的离心率为 .·2·四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15. (13 分)如图,在直三棱柱 ABC- A1B 11C1 中, AA1= AB= 2 AC= 2,AB⊥ BC .(1)求证: AB1⊥ 平面 A1BC ;(2)求平面 A1BC 与平面 A1ACC1 的夹角的余弦值.16. (15分)如图,正方形 ABCD 的边长为 a1 ,取正方形 ABCD 各边的中点 E,F,G,H ,作第 2 个正方形 EFGH ,其边长记为 a2 ; 然后再取正方形 EFGH 各边的中点 I,J ,K,L ,作第 3 个正方形 IJKL ,其边长记为 a3 ; 依此方法一直继续下去,则记第 n n∈N 个正方形的边长为 an. 2已知 a1= 2 ,bn=-log a22 n .(1)求 an,bn ;(2)记第 n 个正方形区域未被第 n+ 1 个正方形区域覆盖的面积为 sn ,求使得 s1+ s2+ +s 2n≥ b 成立的 n 的最小值.n·3·17. (15 分)2已知函数 f x = 1- cosx- x2 ,x∈ -π π2 , 2 .(1)判断函数 f x 的单调性;(2)若 g x = x- ln cosx + π4 ,证明: g x > f x ;n(3) : cos 2证明 k > n- 3 n≥2,n∈N .k=218. (17 分)已知一个大盒子内装有 6 个黄乒乓球, x 2≤x≤8 个白乒乓球.(1) 现甲乙两人从盒中进行随机摸球游戏: 甲, 乙两人轮流交替摸球, 每次摸取一球, 甲先摸球, 直到两人中有一人摸到白乒乓球时游戏结束, 每次摸出的小球均不再放回, 且甲乙摸3球相互独立. 已知乙在第 1 次恰好摸到白乒乓球的概率为 14 .(i) 求 x 的值;(ii) 记 ξ 表示游戏结束时甲摸球的次数,求 ξ 的分布列和期望.(2)整理盒中小球时,需将所有乒乓球排成一排,要求每个黄乒乓球至少与另一个黄乒乓球相邻. 1记不超过 3 个黄乒乓球排在一起的概率为 p ,若 p> 2 ,求 x 的最小值.19. (17 分)2已知 O x为坐标原点,椭圆 Γ: 2 + y2= 1 a>1 的右焦点为 F ,过 F 的直线 l 交 Γ 于 A,Ba两点, P 是 Γ 1上一动点,且 △OPF 的面积最大值为 2 .(1)求椭圆 Γ 的标准方程;(2)若 C 是 Γ 上的另一点,满足四边形 OACB 为平行四边形.(i)求平行四边形 OACB 的面积;(ii) 设 C 关于 O 的对称点为 D ,求证: A,B,C,D 四点共圆.·4·2026届高三“起点”考试数学参考答案(2025.09) 选择题:题号 1 2 3 4 5 6 7 8 9 10 11答案 A C B B C D D D AD BCD ACD 填空题:312. 9 13. 2 14.21.解析: A B 1 ,U 0,1,2 ,CU A B 0,2 . 2.解析:已知 a (1,x),b 2, 1 ,且 a b 1,则 x 1.3.解析:因为 i z 1 i,所以 i z 1 i ,故 z 2.4 2.解析: 0.837 x0.1 2.706,变量 x与 y相互独立.5.解析:函数 y tan 2x的图象平移后得到 y tan 2x 2m ,其图象关于点 0,0 对称,k那么 2 0 2m k Z k, m k π Z ,所以m的最小值为 .2 4 426.解析:a 1,0 x (a 1), f (x) x2 a a1 ax (x )2 的最小值是 ,则:2 4 42若 (a 1) a ,即 2 a 1, f ( a a a 1 5 1) (1 ) 2 a 1 ,a ;2 2 4 4 42若 (a 1) a 5 ,即 a 2, f ( a a 1 ) ,a 1,不合题意舍去.故 a .2 2 4 4 47.解析:将直线 x 2y 5代入抛物线方程,得到 y2 4py 10p 0,设 A( 2y1 5, y1),B( 2y2 5, y2 ),因为OA OB,所以 OA OB ( 2y1 5)( 2y2 5) y1y2 5y1y2 10( y1 y2 ) 25 0,5即 50 p 40 p 25 0, p .2第 1 页 共 10 页8 2.解析: ab b 1 m(a b) b(a b) 1 m(a b) m 1 b ,a b1由题意可知 m的最大值 (b ) ,又 a b 1,所以a b min1b 1 b 1 b 1 2 1 2 1 1 2 2 1 2 1.当且仅当 取a b 2b 1 2 b 1 2 2 2 2b 22等号.2 2 2 2 29.解析: cos B a c b a c ac ac 1 2ac 2ac 2ac 2 ,B (0, ],A正确.3B 当 , sinC sin B 0,sin Bcos A 0,显然不成立,B错误.32 2 2 2若 c 2a , 则b 2a, cosC a b c a 2 1 2 ,C .C错误.2ab 2 2a2 4 2 3C , c2若 则 a2 a a a 5 1 sin A 5 1 b2 a2 ac , ( )2 1, ,sin A .D2 c c c 2 sinC 2正确.图 1 图 2 图 310.解析:如图 2, A1E EC A1C 42 22 2 5 ,A错误.13V 2 2 2V V ,d D A1EB 1 2 2 6如图 3, A EB D D A EB 1 1 1 1 S 1 ,B正确. DB E 2 3 2 312四棱锥 A1 ABCD外接球的球心 O即为该正方体的外接球球心,直线 OE与面 ABCD所成2角的正切值的取值范围为[ ,1] ,C正确.2 记向量 NE与 NM 的夹角为 , NE在 NM 上的投影向量的模长 | NE | cos | NE | N E NM NE NM ,以 A点为坐标原点,AB所在直线为 x轴,| NE | | NM | | NM |第 2 页 共 10 页AD所在直线为 y轴,AA1所在直线为 z轴,建立空间直角坐标系,则 E(x,0,0),N(2,2,1),M(2,1,0), NE (x 2, 2, 1),NM (0, 1, 1), NE N M 3 2 为定值,D正确.| NM | 211.解析因为 f (x)在 ( ,0]上单调递增,0 f (x) 1;在 (0, )上单调递增, f (x) R.结合图象,方程 f ( f (x)) m有三个不同的实数解 方程 f (x) m有两个不同的实数解,A正确.设 a,b是方程 f (x) m a的两个不同实数解,且 a 0 b,那么 e m (0,1],a lnm ( ,0]; lnb 1 m,b em 1 ( 1,1],B错误.e令 f (x) a或 f (x) b,此时 f ( f (x)) m.若 f (x) a ln x 1 a x e a 1 m ,eem 1若 f (x) b, ln x 1 e b x e b 1 x或者 e b x ln b m 1,故m 1是方程ef ( f (x)) m的一个解,C正确.em 1 em 1x m e令 1 , x2 , x m 1 xm e3 ,则 1 x2 x3 m 1,记e e e em eem 1g(m) m 1,在 (0,1]上单调递增,故g(m) g(1) e 1 1 e 1 e,D正确.e e12.解析S 11(a1 a11)11 11a 11, a 1,a a 5d 1,a 9 .2 6 6 6 1 113.解析aA,B的坐标分别为 (0,a), (e 2 ,a),曲线 y 2ln x在 B点处的切线方程为2 ay a a (x e 2 ),从而 C点的坐标为 (0,a 2),| AC | =2.e 214.解析如图, AF1F2内切圆与各边的切点为 H,I,J,| AF1 | | AF2 | (| AH | | HF1 |) (| AI | | IF2 |) | HF1 | | IF2 | | F1J | | JF2 | 2a第 3 页 共 10 页设 J (m,0),则 m=a,即 P点的横坐标为 a.同理可得 Q点的横坐标为 a.PQ的直线方程 为 x=a.直线 AB的倾斜角为 ,4因为 PF2F11 ( ) 3 | PJ | | JF | tan 3 QF F 3 , 2 , 2 1 ,2 4 8 8 2 8 8|QJ | | JF2 | tan ,所以8 3 sin sin 3 sin cos | PQ | | JF2 | (tan tan ) (c a)( 8 83 ) (c a)(8 8 ) (c a ) 2 2(c a)8 8 cos cos cos sin sin cos8 8 8 8 8 8由 | PQ | 2a,即 2a 2 2(c a) ,得 2c 3a,e c 3 .a 2 解答题:15.解析(1)证明:在直三棱柱 ABC A1B1C1 中, AA1 平面 ABC, BC 平面 ABC,所以AA1 BC .··························································································· ············2分又 AB BC , AA1 AB A ,所以 BC 平面AA1B1B , AB 1 平面AA1B1B ,所以BC AB 1.·······································································································4分又 AA1 AB,所以四边形 AA1B1B为正方形,从而 A1B AB1.······················ ············5分因为 A1B BC B,所以 AB1 平面 A1BC.·············································· ············6分(2)以 B为坐标原点,BC所在直线为 x轴,AB所在直线为 y轴, BB1所在直线为 z轴,建立空间直角坐标系,则 B(0,0,0), A(0, 2,0),C(2 3,0,0), A1(0, 2,2),B1(0,0,2) ,从而 AB1 (0, 2,2),AA1 (0,0, 2),AC (2 3, 2,0) .······································ ············8分 设平面 A1ACC1的法向量为 (x, y, z),则 AA1 0 2z 0 ,不妨取 (1, 3,0) ····························· ············10分 AC 0 2 3x 2y 0 由(1)可知,平面 A1BC的法向量为 AB1 ,设平面 A1BC与平面 A1ACC1 的夹角为θ, cos | A B则 1 | 2 3 6 .··································································13分| | | AB1 | 2 2 2 4第 4 页 共 10 页法二:过 B1作 A1C1的垂线,垂足为 E,连接 AE, 平面A1B1C1 平面AA1C1C , B1E A1C1 , B1E 平面ACC1A1 ,由(1)知, AB1 平面A1BC, AB1E的余弦值即为所求.AB E AB 2 2 2 2 2在 1 中, 1 AB BB1 8 AE A1E AA21 5, ,AEB 1B1 C1B11 3 ,设平面 A1BC与平面 A1ACCAC 1的夹角为 , AB1E ,则1 1cos B E 3 6 1 .AB1 2 2 4(其他方法酌情给分)a16.解析(1)由题意, ( n )2 (a n )2 a2n 1,···························································2 分2 2a 2 2 2 n即 n 1 an , a1 ,所以 an ( ) . ········································ ············4分2 2 2a2 1n ( )n 2 ,bn log2 an n. n N ···························································6分2n n 1 n 1(2)由题意, sn a2n a2 1 1 1 n 1 , ····························· ············8分 2 2 2 n 1 s1 s2 sn a2 a 2 a 2 a 2 2 2 2 2 1 1 1 2 2 3 an an 1 a1 an 1 ,····· ············9分2 2 1 1n 1 2 2 2 ≥ , n2 n 1 1 1 0 ················································································ ············10分n 2 22 1 n 1 1设 f n 则 f n 为单调递减函数,··················································12分n 2 2 ,且 f 5 1 1 0 ·············································································· ············13分64 10f 4 1 0 ························································································ ············14分32又 n N , n≥5 n的最小值是 5.·································································································15 分第 5 页 共 10 页17.解析:(1) f x sin x x,f x cos x 1 0.·········································2分 f x 在 , 上单调递减.所以 x 2 2 0, , f x f 0 0; x ,02 2 , f x 0.···························································································· ············3分f x ,0 f x 故 在 单调递增, 在 0, 单调递减.································ ············4分 2 2 (2)据(1)可知, f x f (0) 0恒成立.················································ ············5分 g x 1 sin x 1 tan x,··············································································6分cos x g x , 在 上单调递减,在 , 上单调递增;························· ············8分 2 4 4 2 g x g 1 ln 2 1 , g x ln 2 0, 4 2 2则 g x f x 成立.················································································ ············10分法二:要证 g x f x ,即证 g x f x 0令m x ln x x 1 m x 1 1 1 x ,x x当 x 1时m x 0 ,函数m x 在 x (1, )上单调递减,当 x 1时,m x 0,函数m x 在 x (0,1)上单调递增,m 1 0 m x 0,即 ln x x 1.令 h x g(x) f (x) x ln(cos x) cos x 1 x2 1 ,2 41 2即 h x x x cosx ln(cosx ) 1 ,2 41 y 1 12 ≥ ≥-令 y1 x ,则 1 1 2,根据 ln x x 1, cos x ln(cos x)≥12 4, 21 h(x) 0, g x f x 成立.2 42 2(3) 据(1 x)可知, f x 1 cos x 0 cos x 1 x ,··················· ············11分2 22 2 2令 x ,则cos 1 2 ,······································································ ············12分n n n第 6 页 共 10 页 cos 2 2 1 2 12 1 2 1 1 n 2,n N* .···················· ············13分n n n 1 n n 1 n n cos 2 cos1 cos 2 cos 2 cos 2 cos 2 ,k 2 k 3 4 5 ncos1 2 cos 1 2 1 1 2 , cos 1 2 1 1 2 1 1 , , cos 1 2 2 1 2 , 3 2 3 n n 1 n 相加可得: cos1 cos2 cos 2 n 1 2 1 1 n 32 ,·············· ············14分3 n n n2 2 n 2 n 2因为 n 2,则 0, n 3 n 3,所以 cos n 3,故n n k cos n 3对k 2 k 2 kn 2,n N*恒成立. ············································································· ············15分18.解析C1C1 3(1)(ⅰ)由题意,乙第一次恰好摸到白球的概率为 6 x1 1 ,·················· ·········· 2分C6 xC5 x 142即 x 17x 30 0,解得 x 2或 x 15.················································· ············4分因为 2 x 8,所以 x 2 .········································································ ············5分(ⅱ)根据游戏规则, 的取值可能为 1,2,3,4.················································· ············6分1 1 1P( 1) C2 C6 C2 1 3 13 1 1 1 ;······················································· ············7分C8 C8 C7 4 14 28P( 2) C2 C1 C 36 2 6 C1 25 1 92 1 3 1 ;·····························································8分C8 C6 C8 C5 28 7 28C 4 1 5 1P( 3) 6 C2 C6 C2 3 1 5 4 1 5 1 ;··············································· ············9分C8 C4 C8 C3 28 14 28P( C6 1 4) 6 C2 16 1 ;··········································································· ············10分C8 C2 28所以 的分布列为 1 2 3 413 9 5 1P28 28 28 28第 7 页 共 10 页E 1 13 2 9 3 5 4 1 25 .················································· ············11分28 28 28 28 14(2)整理乒乓球时,要使得至少 2个黄球相邻,则有“黄黄-黄黄-黄黄”,“黄黄黄-黄黄黄”,“黄黄-黄黄黄黄”,“黄黄黄黄-黄黄”,“黄黄黄黄黄黄”5种情况.可以先排列白球,通过插空法,让黄球排列在白球与白球之间的空位上.所以“黄黄-黄黄3-黄黄”有Cx 1种排法;··········································································· ············12分2 2“黄黄黄-黄黄黄”,“黄黄-黄黄黄黄”,“黄黄黄黄-黄黄”均有Cx 1种排法,总共3Cx 1种;······································································································· ············13分1“黄黄黄黄黄黄”有Cx 1种排法.································································· ············14分不超过 3个黄球在一起的情况只能为“黄黄-黄黄-黄黄”与“黄黄黄-黄黄黄”两种情况,C 3 C 2 x2 2x 1所以 p x 1 x 1 > ,··········································· ············16分C 3 2x 1 3Cx 1 C1 2x 1 x 8x 6 22即有 x 4x 6>0,解得 x>2 10或 x<2 10(舍去),所以 x的最小值为 6.·········17分19.解析1 11 2 2( )当 P在短轴顶点时 S OFP 最大,此时 S OFP a 1 ,得 a 2 ······ ············2 分2 2x2 2所以椭圆方程为: y 1 ···································································· ············4 分2(2)(i)由题意可得,直线 l的斜率存在,设 A(x1, y1),B(x2 , y2 ),直线 l的斜率为 k.x2AB 2 2 2 2 2直线 的方程为 y k (x 1),代入 y 1,得 (2k 1)x 4k x 2k 2 0 .····· 5分22 2 16k 4其中 4(2k 2 1)(2k 2 2) 8k 2 8 0 x 4k 2k 2 , 1 x2 2 ,x1x2k 1 2 ,2k 2 1y1 y2 k (x x ) 2k2k1 2 2 ,························································ ············6分2k 14k 2 2k 2 1从而C( 2 , 2 ) .因为 C点在椭圆上,代入椭圆方程解得 k ,·····················7分2k 1 2k 1 21所以 x1 x2 1, x1x2 .········································································ ············8 分2| AB | 1 k 2 | x1 x2 | 1 k2 (x x )21 2 4x1x2 ,又点 O 到直线 AB 的距离为d | k | ,·····································································································9 分1 k 2第 8 页 共 10 页6平行四边形OACB的面积 S | AB | d | k | (x 21 x2) 4x1x2 .···························10 分2(其他方法酌情给分)(ii)由(i)可知C(1, k),C关于 O的对称点为D( 1,k),A(x1,k(x1 1)),B(x2 ,k(x2 1)),因为 x1 x12 1, x1x2 ,2 即 A(x1, kx2 ),B(x2 , kx1) .CA (x1 1,k kx2 ) ( x2 ,kx1),CB ( x1,kx2 ) , 所以CA CB (1 k 2)x1x32 ,····························································· ············12 分4 |CA | |CB | x 2 k 22 x2 x 2 k 2x 2 (1 k 4)x 2x 2 k 2(x 4 x 4 5 1 41 1 2 1 2 1 2 ) (x1 x416 2 2) 又DA (x1 1, k (x2 1)),DB (x2 1, k (x1 1)) , 2 9所以DA DB (1 k )(x1 1)(x2 1) ,······························································13 分4 | DA | | DB | (x1 1)2 k 2(x2 1)2 (x2 1)2 k 2(x1 1)2 45 1 ((x1 1)4 (x 1) 4)16 2 2x x 1, x x 1 x 3 1, x 1 3根据 1 2 1 2 ,不妨设 1 2 2 2 22 2 4 4计算可得 (1 x1) 3x1 , (1 x1) 9x1 , (1 x2)2 3x2 42 , (1 x2) 9x42 ,······················15 分 所以 | DA | | DB | 3 |CA | |CB |, cos CA,CB CA CB cos DA,DB ,|CA | |CB |所以 ACB ADB .·····················································································16 分根据对角互补的四边形为圆的内接四边形,可知 A,B,C,D四点共圆.·····································17 分法二:曲线系解法由(1)(2)得 lAB : y k(x 1)即 kx1 y k 0, lCD : y x即 x 2ky 0,2k 过 A,B,C,D 1 2 2的二次曲线系为 x y 1 (kx y k )(x 2ky) 0, R ,2x2 , y2 , xy 1 2的系数依次为 k,1 2 k, (2k 1) ,2(2) k 2 1由 得 , xy的系数 (2k 2 1) 021 1 1 2又令 k 1 2 k ,得 k , , 存在.2 6 6k 6第 9 页 共 10 页 A,B,C,D四点共圆.注:曲线系设法不同, 的取值不同,因此,只需 有解即可.第 10 页 共 10 页 展开更多...... 收起↑ 资源列表 恩施州2026届高三九月起点考试 (1).pdf 恩施州2026届高三九月起点考试数学参考答案(1).pdf