5.1 第2课时 含30 °角的直角三角形的性质 导学案(含答案) 2025-2026学年湘教版(2024)初中数学八年级上册

资源下载
  1. 二一教育资源

5.1 第2课时 含30 °角的直角三角形的性质 导学案(含答案) 2025-2026学年湘教版(2024)初中数学八年级上册

资源简介

5.1 第2课时 含30 °角的直角三角形的性质
素养目标
1.通过动手操作,探究“在直角三角形中,30°角所对的直角边等于斜边的一半”的性质.
2.利用“有一个角为30°的直角三角形的性质与逆命题”开展实际应用.
重点
1.“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”的理解与应用.
2.“在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°”的理解与应用.
【自主预习】
1.在直角三角形中,其中一个锐角是30°,另一个锐角是多少度
2.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=4,问AB的长是多少
1.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8 cm,则BC的长为 (  )
A.6 cm B.5 cm C.4 cm D.3 cm
2.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为 (  )
A.6米 B.9米 C.12米 D.15米
【合作探究】
知识点一:在直角三角形中,30°角所对的直角边与斜边的关系
阅读课本本课时“思考”至“例2”的内容,回答下列问题.
1.图中的线段存在的等量关系为BC=    =    =    .
2.△BCD,△ACD分别是    三角形、    三角形.
3.在Rt△ABC中,∠BCA=90°,∠A=30°,BC=    AB.
  在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的    .
1.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于点D,交AB于点E.若AC=12,则AD的长是 (  )
A.6 B.7 C.8 D.9
知识点二:在直角三角形中,一条直角边等于斜边的一半,求这条直角边所对的角
阅读课本本课时“例3”的内容,回答下列问题.
1.在方法一中,D是AB的    ,CD=    =    =AB,而BC=AB,所以△BCD是
    三角形.
2.在Rt△ABC中,∠BCA=90°,BC=AB,则∠A=    .
  在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为    .
2.如图,在△ABC中,AB=AC,BE⊥AC,D是AB的中点,且DE=BE.求∠C的度数.
含30°角的直角三角形的性质应用
例 为了推进节能减排,某市新换了一批新能源公交车(如图1).图2、图3分别是该公交车双开门关闭、打开中某一时刻的俯视(从上面往下看)示意图.ME,EF,FN是门轴的滑动轨道,∠E=∠F=90°,两门AB,CD的门轴A,B,C,D都在滑动轨道上,两门关闭时(如图2),点A,D分别在点E,F处,门缝忽略不计(B,C重合);两门同时开启时(如图3),点A,D分别沿E→M,F→N的方向同时以相同的速度滑动,当点B到达点E处时,点C恰好到达点F处,此时两门完全开启.若EF=1 m,AB=CD,在两门开启的过程中,当∠ABE=60°时,求BC的长度.
图1
参考答案
【自主预习】
预学思考
1.60°.
2.AB=8.
自学检测
1.C 2.B
【合作探究】
知识生成
知识点一
1.BD DA CD
2.等边 等腰
3.
归纳总结 一半
对点训练
1.C
知识点二
1.中点 AD BD 等边
2.30°
归纳总结 30°
对点训练
2.解:因为BE⊥AC,且D为AB的中点,所以DE为直角三角形ABE斜边上的中线,所以DE=AB.又因为BE=DE,所以BE=AB,所以∠A=30°.在△ABC中,AB=AC,所以∠ABC=∠C,所以∠C=×(180°-30°)=75°.
题型精讲
题型

解:因为点A,D分别沿E→M,F→N的方向同时以相同的速度滑动,
所以BE=CF.
因为EF=AB+CD=1(m),
所以AB=CD= m.
在Rt△AEB中,∠E=90°,∠ABE=60°,
所以∠EAB=30°,
所以BE=AB=(m),所以CF=BE= m,
所以BC=EF-BE-CF=(m).

展开更多......

收起↑

资源预览