第二十二章 二次函数--二次函数的综合题专训之特殊四边形存在性问题 常见题型总结练 2025-2026学年上学期初中数学人教版九年级上册

资源下载
  1. 二一教育资源

第二十二章 二次函数--二次函数的综合题专训之特殊四边形存在性问题 常见题型总结练 2025-2026学年上学期初中数学人教版九年级上册

资源简介

中小学教育资源及组卷应用平台
第二十二章 二次函数--二次函数的综合题专训之特殊四边形存在性问题
常见题型总结练 2025-2026学年上学期初中数学人教版九年级上册
一、二次函数的综合题专训之平行四边形存在性问题
方法归纳
1.解题思路:确定抛物线定点(如A、B),设动点P、Q,分以AB为边或对角线两类,利用平行四边形对边平行且相等或对角线互相平分性质分析。
2.解题技巧:用中点坐标公式(对角线中点重合)列方程,结合抛物线表达式消元;借向量平行(坐标差相等)简化关系,注意动点范围。
3.解题方法:代数法联立中点或向量方程求解;辅以几何法(平移定点得动点轨迹),验证四点不共线及图形合理性。
1.如图,直线与轴交于点,与轴交于点,抛物线经过,两点.
(1)求抛物线的解析式;
(2)是直线下方抛物线上的一动点,连接,,当的面积最大时,求点的坐标;
(3)是抛物线对称轴上的动点,在抛物线上是否存在点,使得以,,,为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
2.如图,抛物线与轴相交于、两点(点在点的左侧),与轴相交于点,顶点为,连接,与抛物线的对称轴交于点.
(1)求点、点的坐标和抛物线的对称轴;
(2)求直线的函数关系式;
(3)点为线段上的一个动点,过点P作交抛物线于点.设点的横坐标为;用含的代数式表示线段的长,并求出当为何值时,四边形为平行四边形?
二、二次函数的综合题专训之矩形存在性问题
方法归纳
1.解题思路:确定抛物线定点(如A、B),设动点P、Q,分以AB为边或对角线,利用矩形“对角线互相平分且相等”或“平行四边形+一角为直角”的性质分析。
2.解题技巧:用中点坐标公式(对角线中点重合)和勾股定理(对角线等长)列方程,借抛物线表达式消元;结合斜率(垂直时积为-1)验直角,限定动点范围。
3.解题方法:代数法联立对角线条件方程求解;先证平行四边形再验证直角(斜率法),结合图形验合理性。
3.如图,在平面直角坐标系中,抛物线与x轴交于点,与y轴交于点C,连接,对称轴为,点D为此抛物线的顶点.
(1)求抛物线的解析式.
(2)若连接,则________
(3)点E是第一象限内抛物线上的动点,连接和,求面积的最大值.
(4)点P在抛物线的对称轴上,平面内存在点Q,当以点为顶点的四边形是矩形时,请直接写出点Q的横坐标.
4.如图,抛物线与轴交于、两点(点在点的左边),点、的坐标分别是、,与轴交于点,点的坐标是,点和点关于抛物线的对称轴对称.
(1)求抛物线的解析式;
(2)如图,直线上方的抛物线上有一点,过点作于点,求线段的最大值;
(3)点是抛物线的顶点,点是轴上一点,点是坐标平面内一点,以,,,为顶点的四边形是以为边的矩形,求点和的坐标.
三、二次函数的综合题专训之菱形存在性问题
方法归纳
1.解题思路:确定抛物线定点(如A、B),设动点P、Q,分以AB为边(邻边相等)或对角线(对角线垂直平分)两类,利用菱形“四边相等”或“平行四边形+邻边相等”性质分析。
2.解题技巧:用距离公式表边长(四边相等),中点坐标公式(对角线平分),斜率乘积-1(对角线垂直)列方程,结合抛物线消元,限定动点范围。
3.解题方法:代数法联立平行四边形与邻边相等方程;先证平行四边形,再验四边相等或对角线垂直,结合图形验合理性。
5.如图,抛物线 与x轴交于两点,与y轴交于点C,对称轴为直线l.
(1)求抛物线的解析式;
(2)点P是直线下方的抛物线上一个动点,求四边形面积的最大值及此时P点的坐标;
(3)点F是直线l上一点,点G是平面内一点,是否存在以为边,以点B,C,F,G为顶点的菱形?若存在,请求出点F的坐标;若不存在,请说明理由.
6.如图,在平面直角坐标系中,已知抛物线经过点,与y轴交于点B,且关于直线对称.
(1)求该抛物线的解析式;
(2)点C是抛物线上位于第一象限的一个动点,过点C作x轴的垂线交直线于点D
①当三角形面积最大时,请求出点C的坐标和三角形面积的最大值.
②在y轴上是否存在点E,使得以B,C,D,E为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.
四、二次函数的综合题专训之正方形存在性问题
方法归纳
1.解题思路:确定抛物线定点(如A、B),设动点P、Q,分以AB为边(邻边等且垂直)或对角线(对角线等且垂直平分),利用正方形“四边等+四角直”或“菱形+矩形”性质分析。
2.解题技巧:用距离公式(边等)、斜率积-1(垂直)、中点重合(对角线平分)列方程,借抛物线消元,结合图形限动点范围。
3.解题方法:代数法联立邻边等与垂直方程;先证矩形再验邻边等,或先菱形再验直角,结合图形验合理性。
7.如图,抛物线经过三点.
(1)求抛物线的解析式.
(2)探究在抛物线上是否存在点P,使?若存在,请求出点P的坐标;若不存在,试说明理由.
(3)直线交y轴于点G,M是线段上动点,轴与抛物线段交于点N.轴于F,轴于H,当四边形是正方形时,求点M的坐标
8.如图,在平面直角坐标系中,抛物线与轴相交于两点(点在点的左边),与轴相交于点,且抛物线的顶点坐标为.
(1)求抛物线的表达式;
(2)是抛物线上位于第四象限的一点,点,连接相交于点,连接.若与的面积相等,求点的坐标;
(3)是抛物线上的两个动点,分别过点作直线的垂线段,垂足分别为.是否存在点,使得以为顶点的四边形是正方形?若存在,求该正方形的边长;若不存在,说明理由.
能力练
1.在平面直角坐标系中,抛物线与轴交于点,与轴交于点,且点坐标为,点坐标为.
(1)求二次函数的表达式;
(2)如图1,若点是第二象限内抛物线上一动点,求点到直线距离的最大值;
(3)如图2,若点是抛物线上一点,点是抛物线对称轴上一点,是否存在点使以为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
2.如图,在平面直角坐标系中,抛物线与轴交于两点,与轴的负半轴交于点,且,点是直线下方抛物线上的一动点.
(1)求该抛物线的函数表达式;
(2)连接,并将沿轴对折,得到四边形,是否存在点,使四边形为菱形?若存在,求出此时点的坐标;若不存在,请说明理由;
(3)在点运动过程中,当四边形的面积最大时,求出此时点的坐标和四边形的最大面积.
3.如图1,抛物线与x轴交于点和点B,与y轴交于点.
(1)求抛物线的解析式;
(2)如图2,连接,点P为直线上方抛物线上的点,过点P作轴交于点M,求的最大值及此时点P的坐标;
(3)如图3,将抛物线先向右平移1个单位长度,再向上平移1个单位长度得到新的抛物线,在的对称轴上有一点D,坐标平面内有一点E,使得以点B,C,D,E为顶点的四边形是矩形,请直接写出所有满足条件的点E的坐标.
4.如图,抛物线与x轴交于点,,与y轴交于点,连接,点为线段上一个动点(不与点C,B重合),过点P作轴交抛物线于点Q.
(1)求抛物线的表达式和对称轴;
(2)设P的横坐标为t,请用含t的式子表示线段的长,并求出线段的最大值;
(3)已知点M是抛物线对称轴上的一个点,点N是平面直角坐标系内一点,当线段取得最大值时,是否存在这样的点M,N,使得四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
5.综合与探究
如图1,二次函数的图象与x轴交于点A,B(点A在点B左侧),与y轴交于点.点P是y轴左侧抛物线上的一个动点,设点P的横坐标为m,过点P作x轴的平行线交y轴于点D,交抛物线于另一点E.
(1)求点A,B,C的坐标.
(2)如图2,当点P在第二象限时,连接,交直线于点F.当时,求m的值.
(3)当点P在第三象限时,以为边作正方形,当点C在正方形的边上时,直接写出点D的坐标.
答案
一、二次函数的综合题专训之平行四边形存在性问题
1. (1)解:∵直线与轴交于点,与y轴交于点B,
∴点B,C的坐标分别为,.
把点,代入抛物线,
得:,
解之,得
∴抛物线的解析式为.
(2)解:如图,过点E作轴,交直线于点G,交x轴于点F,
设点E的坐标为,则点的坐标为,
∴.
∴.
∴当时,的面积就最大. 此时点E的坐标为.
(3)解:存在.由抛物线
∴对称轴是直线.
∵Q是抛物线对称轴上的动点,
∴点Q的横坐标为1.
①当为边时,点B到点C的水平距离是4,
∴点Q到点P的水平距离也是4.
∴点P的横坐标是5或,
∴点P的坐标为或;
②当为对角线时,点到点C的水平距离是3,
∴点B到点P的水平距离也是3,
∴点P的坐标为.
综上所述,在抛物线上存在点P,使得以P,Q,B,C为顶点的四边形是平行四边形,点P的坐标是或或.
(1)解:在中,
当时,,
当时,由,得,,
结合题意可得,,,
∵,
∴抛物线的对称轴为直线,
答:点的坐标为,点的坐标为,抛物线的对称轴为直线.
(2)解:设直线的函数关系式为,
∵,,
∴,
解得,,
∴,
答:直线的函数关系式为.
(3)解:根据题意可知,点和点的横坐标均为,点和点的横坐标均为,
在中,
当时,,
当时,,
∴,,
在中,
当时,,
当时,,
∴,,
∵点在线段上,
∴点在点的上方,
∴,
∵,
∴当时,四边形为平行四边形,
∴,,
∴,
答:线段的长为,当时,四边形为平行四边形.
二、二次函数的综合题专训之矩形存在性问题
3. (1)解:抛物线与x轴交于点A、B,,对称轴为直线,
∴,
∴,
将A,B代入得:

解得,
∴抛物线的解析式为;
(2)解:,
∴,
又,
∴,
∴,,,
∴,
∴;
故答案为:90;
(3)解:设直线的解析式为,
将点B,点C的坐标代入得:,
解得:,
∴直线的解析式为,
设,
如图,作轴交于点F,
则,
∴,

当时,有最大值为;
(4)解:设,,
由(1)知,
①若为矩形的对角线,
由中点坐标公式得:,
解得:,
∴点的横坐标为2;
②若为矩形得对角线,
由中点坐标公式得:,
解得,
∴点的横坐标为4;
③若为矩形的对角线,
由中点坐标公式得:,
解得:,
∴点Q的横坐标为,
综上,点Q的横坐标为4或2或.
4. (1)解: 把,,分别代入得: ,
解得 ,
抛物线的解析式为;
(2)解:由(1)知,
抛物线对称轴为直线,
点和点关于抛物线的对称轴对称,

设直线的解析式为,
把,分别代入得 ,
解得 ,
直线的解析式为
记于轴的交点为,
当时,,则,

为等腰直角三角形,

过作轴交于,

为等腰直角三角形,

设,则,

当时,有最大值,
的最大值为:;
(3)解:如图,当在的右边,
记直线交轴于,,则,
设直线的解析式为,
把、分别代入得 ,
解得 ,
直线的解析式为,
当时,,则,
设,而四边形为矩形,


解得:,即,
由平移的性质可得:;
如图,当在的左边,
同理可得:,
解得:,即,
由平移的性质可得:;
综上:或.
三、二次函数的综合题专训之菱形存在性问题
5. (1)解:把点代入得:

解得:,
∴抛物线的解析式为;
(2)解:∵点,
∴,
当时,,
∴点,
∴,
如图,连接,
设点P的坐标为,
∴四边形面积

∵,
∴当时,四边形面积最大,最大值为9,
此时点P的坐标为;
(3)解:∵点,
∴抛物线的对称轴为直线,
设点F的坐标为,
当为边,为对角线时,,
即,
∴,
解得:,
∴点F的坐标为或;
当为边,为对角线时,,
即,
∴,
解得:,
∴点F的坐标为或;
综上所述,点F的坐标为或或或.
(1)解:∵抛物线经过点,与y轴交于点B,且关于直线对称,
∴,
解得:,
∴;
(2)解:①当,

设直线表达式为:,
∴,
解得:,
∴设直线表达式为,
设,则,
∴,
∴,
∴,
∵,
∴当时,面积最大值为,
∴此时;
②存在点以B,C,D,E为顶点的四边形是菱形,
此时,,,
当B,C,D,E为顶点的四边形是菱形时,分两种情况:
①当为边时,则:,即,
解得:(舍去)或,
此时菱形的边长为;
②当为对角线时,则:,即:,
解得:或(舍去)
此时菱形的边长为:;
综上:存在以B,C,D,E为顶点的四边形是菱形,边长为或2.
题型四、二次函数的综合题专训之正方形存在性问题
(1)解:根据题意:设抛物线的解析式解析式为,将代入得:

解得:,
则抛物线的解析式解析式为;
(2)解:将代入,则,
∴,
过点P作轴的垂线,交于点Q,
设直线的解析式为,则,解得:,
∴直线的解析式为,
设,则,
∴,
∵,,
∴轴,
∵,
∴,即,
∴,
当时,解得:或,
则或,
∴点P的坐标为或;
当时,方程无解;
综上,点P的坐标为或;
(3)解:设直线的解析式为,
则,解得:,
∴直线的解析式为,
设,,
∵轴与抛物线段交于点N,轴于F,轴于H,
∴,,
∴,
∵四边形是正方形,
∴,
∴,
∴,
∴,即,
解得:或(舍去),
则,
∴.
(1)解:∵抛物线与轴相交于点,且抛物线的顶点坐标为.
∴设抛物线的解析式为:,
把代入,得:,
∴,
∴;
(2)当时,解得:,
∴,
∵,
∴设直线的解析式为:,把代入,得:,
∴,
作轴,垂足为点,设,则:,
∴,
∴与的面积相等,
∴,即:,
∵,
∴,
∴,
解得:或(舍去);
∴;
(3)存在点,使四边形为正方形,
如图所示,过作轴,过作轴,过作轴,则有与都为等腰直角三角形,,
由(2)可知,直线的解析式为,
设,直线解析式为,
联立得:,
消去得:,

为等腰直角三角形,




∵四边形为正方形,
∴,

整理得:,
解得:或,
正方形边长为,
或.即正方形的边长为或.
能力练
1.(1)解:∵点,点在抛物线 的图象上,

解得:,,
抛物线的解析式为.
(2)解:过作于点,过点作轴交于点,如图1:
∵抛物线与轴交于点,
∴点的坐标为,
又,

是等腰直角三角形,

轴,

是等腰直角三角形,

当最大时,最大,
设直线解析式为,
将代入得,

直线解析式为,
设,
则,


当时,最大为,
此时最大为,即点到直线的距离值最大.
(3)解:存在,满足条件点的坐标为或或,理由如下,
当以为平行四边形的边时,如图2,
点,,

即,
解得,

点的坐标为;
当以为平行四边形的边长时,如图3,
点,,

即,
解得,

点的坐标是;
当以为对角线时,如图4,
,,
线段的中点的坐标为,即,

解得,

点的坐标是.
综上所述,点的坐标为或或.
2.(1)解: 抛物线与轴的负半轴交于点,且,

把,,代入中,
得解得
该抛物线的函数表达式为.
(2)解:假设抛物线上存在点,使四边形为菱形,连接交于点.如图,
四边形为菱形,,
,且,
,即点的纵坐标为.
由,得,(不合题意,舍去),
故存在这样的点,此时点的坐标为.
(3)解:连接,作轴于点,轴于点,如图,
设点的坐标为.
,,,
,,,,

当时,,
此时点的坐标为,
即当点运动到时,四边形的面积最大,四边形的最大面积为32.
3.(1)解:把和代入,得:
,解得:,
∴抛物线的解析式为;
(2)解:当时,
解得:

设直线的解析式为,把,点的坐标代入得:
,解得:,
∴直线的解析式为
点P为直线上方抛物线上的点,
设,


当时,,

(3)解:∵
将抛物线先向右平移1个单位长度,再向上平移1个单位长度得到新的抛物线,
∴,
的对称轴为.
∵,,
∴,
如图:当为矩形一边时,且点D在x轴的下方,过D作轴于点F,
∵D在的对称轴上,

∵,,
∴,
,,即点,
∴点C向右平移2个单位、向下平移2个单位可得到点D,则点B向右平移2个单位、向下平移2个单位可得到点;
如图:当为矩形一边时,且点D在x轴的上方,的对称轴为与x轴交于点F,
∵D在的对称轴上,
∴,

,即,
,即点,
∴点B向左平移1个单位、向上平移1个单位可得到点D,则点C向左平移1个单位、向上平移1个单位可得到点;
当为矩形对角线时,设,,的中点F的坐标为,
依意得:,解得,
又,

解得:,
联立,
解得:,
∴点E的坐标为或.
综上,存在点或或或,使得以点,,,为顶点的四边形是矩形.
4.(1)解:设抛物线的表达式为,
因为抛物线与x轴交于点,,
所以,则抛物线的对称轴为直线.
(2)解:由抛物线表达式得:C点坐标为,
设直线的表达式为,将点B的坐标代入上式得,
故直线的表达式为,
设点,则点,
则,
,故有最大值,当时,的最大值为.
(3)解:存在,理由如下:
当时,点,
设点,而点;
四边形是菱形,则,
即,解得:,
即点M的坐标为或.
5.(1)解:在中,令,则,
解得:,,
∴,,
令,则,即;
(2)解:设直线的解析式为,
将,代入解析式得,
∴,
∴直线的解析式为,
∵,
∴抛物线的对称轴为直线,
由题意得:,则,
∵轴,
∴点、关于抛物线的对称轴直线对称,即直线经过线段的中点,
如图,

∵交直线于点F,且,
∴当时,,即,
∴,
解得:,
∵点在第二象限,
∴,
∴;
(3)解:设,且,则,
∵,,
∴,,
如图,当点在正方形的边上时,设边交轴于,

则,,
∴,
∵,
∴,
∴,即,
∴,
∴,
∵,
∴,
∵,
∴,
∴,即,
∴,
∴,
∵,
∴,
解得:(舍去),,
∴;
如图,当点在正方形的边上时,

∵,
∴,
∴,
∴,
∴,即,
∴,
∴,
综上所述,点的坐标为或.
3.2 函数的基本性质--函数的单调性和最大(小)值 常见题型总结练 2025-2026学年数学高一年级人教A版(2019)必修第一册
一:图象法求单调区间
1.如图是函数的图象,则函数的单调递减区间为( )
A. B. C. D.
2.函数的单调递增区间是( )
A. B. C. D.
3.已知函数的图象如图所示,则该函数的减区间为( )

A. B.
C. D.
4.定义在上的函数的单调递减区间是 .
二:函数单调性的判断
1.已知四个函数的图象如图所示,其中在定义域内具有单调性的函数是( )
A. B.
C. D.
2.(多选题)在区间上为减函数的是( )
A. B. C. D.
3.(多选题)下列函数中,在R上是增函数的是( )
A.y=|x| B.y=x
C.y=x2 D.y=
4.下列函数中,在上单调递增的是( )
A. B. C. D.
三:证明或判断函数的单调性
1.下列函数中,满足“对任意,,当时,都有”的是( )
A. B. C. D.
2.函数在上的最小值为( )
A.1 B. C. D.
3.下列函数中,在区间上为增函数的是( )
A. B. C. D.
4.已知函数的定义域为,则下列说法中正确的是( )
A.若满足,则在区间内单调递增
B.若满足,则在区间内单调递减
C.若在区间内单调递增,在区间内单调递增,则在区间内单调递增
D.若在区间内单调递增,在区间内单调递增,则在区间内单调递增
四:求函数的单调区间
1.函数的单调增区间为( )
A. B. C.和 D.
2.函数的单调递增区间是( )
A.(,1] B.[1,) C.[1,4] D.[2,1]
3.已知,则函数的单调增区间是 .
4.(24-25高一上·全国·课堂例题)已知函数,,根据图象写出它的单调区间..
五:函数单调性的应用
1.已知函数在区间上是减函数,则整数a的取值可以为( )
A. B. C.0 D.1
2.若函数在区间上单调递减,则实数的取值范围是( )
A. B. C. D.
3.若函数(为实数)是R上的减函数,则( )
A. B. C. D.
4.若在上为减函数,则实数的取值范围为( )
A. B. C. D.
六:利用单调性比较大小或解不等式
1.若函数在上单调递增,且,则实数的取值范围是( )
A. B. C. D.
2.已知函数f(x)的定义域为R,且对任意的x1,x2且x1≠x2都有[f(x1)﹣f(x2)](x1﹣x2)>0成立,若f(x2+1)>f(m2﹣m﹣1)对x∈R恒成立,则实数m的取值范围是(  )
A.(﹣1,2) B.[﹣1,2]
C.(﹣∞,﹣1)∪(2,+∞) D.(﹣∞,﹣1]∪[2,+∞)
3.设函数在区间上有意义,任意两个不相等的实数,下列各式中,能够确定函数在区间上单调递增的是( )
A. B.
C. D.
4.(多选题)设函数在上为减函数,则( )
A.
B.
C.
D.
E.
函数的最大(小)值
一:利用图象求函数最值
1.定义在R上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f(7)=6,则f(x)(  )
A.在[-7,0]上是增函数,且最大值是6
B.在[-7,0]上是减函数,且最大值是6
C.在[-7,0]上是增函数,且最小值是6
D.在[-7,0]上是减函数,且最小值是6
2.函数y=f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是(  ).
A.f(-2),0 B.0,2 C.f(-2),2 D.f(2),2
3.若函数,它的最大值为,则实数的取值范围是( )
A. B. C. D.
4.函数在区间上的值域为
二:利用单调性求函数最值
1.函数y=在[2,3]上的最小值为( )
A.2 B.
C. D.-
2.已知函数在区间上的最大值为A,最小值为B,则A-B等于( )
A. B. C.1 D.-1
3.函数在区间上的最小值为( )
A. B.1 C. D.2
4.若函数y=在区间[2,4]上的最小值为5,则k的值为(  )
A.5 B.8
C.20 D.无法确定
三:求二次函数的最值
1.已知函数在区间上有最大值5,最小值1,则的值等于( )
A. B.1 C.2 D.3
2.定义域为R的函数满足,且当时,,则当时,的最小值为(  )
A. B. C. D.
3.(多选题)关于函数()在上最小值的说法不正确的是( )
A.4 B.
C.与的取值有关 D.不存在
4.(多选题)已知在区间上的最小值为,则可能的取值为( )
A. B.3 C. D.1
四:判断二次函数的单调性和求解单调区间
1.函数在区间上递增,则实数的取值范围是(  )
A. B. C. D.
2.若函数在上是减函数,则实数m的取值范围是( )
A. B. C. D.
3.若函数在上是减函数,则实数m的取值范围是( )
A. B. C. D.
4.(多选题)已知函数的定义域为,值域为,则的可能的取值是( )
A.1 B.2 C.3 D.4
五:函数最值的实际应用
1.如图所示是函数的图象,图中曲线与直线无限接近但是永不相交,则以下描述正确的是( )
A.函数的定义域为
B.函数的值域为
C.此函数在定义域中不单调
D.对于任意的,都有唯一的自变量x与之对应
2.若是偶函数,且对任意∈且,都有,则下列关系式中成立的是( )
A. B.
C. D.
3.向一个圆台形的容器(如图所示)中倒水,且任意相等的时间间隔内所倒的水体积相等,记容器内水面的高度y随时间t变化的函数为,则以下函数图象中,可能是的图象的是(  ).
A. B.
C. D.
4.(23-24高一上·全国·课后作业)一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示(至少打开一个水口).

给出以下4个论断,其中正确的是(  )
A.0点到3点只进水不出水
B.3点到4点不进水只出水
C.3点到4点只有一个进水口进水
D.4点到6点不进水也不出水
答案
一:图象法求单调区间
根据题意,结合函数图象可得函数的单调递减区间为:.
故选:.
函数的定义域需要满足,解得定义域为,
因为在上单调递增,所以在上单调递增,
故选:D.
函数的图象在区间和是下降的,在区间和是上升的,
故该函数的减区间为.
故选:C.
,取
如图所示:
单调递减区间是
故答案为
二:函数单调性的判断
对于A,函数分别在及上单调递增,
但存在,使,故A不符合题意;
对于C,函数分别在及上单调递增,
但存在,使,故C不符合题意;
对于D,函数分别在及上单调递减,
但存在,,使,故D不符合题意;
只有B完全符合增函数的定义,具有单调性.
故选:B.
解:函数是上的减函数,
函数在区间上单调递减,
函数在区间单调递减.
函数在区间单调递增,
所以A,B,C符合要求;D项不符合要求.
故选:ABC.
解:选项A,,当x<0时单调递减,不符合题意;
选项B,显然在R上是增函数,符合题意;
选项C,y=x2,当x<0时单调递减,不符合题意;
选项D,作出草图如下,实线部分,观察图象可得函数在R上为增函数,符合题意.

故选:BD
对于A中,函数在上单调递减,所以A不符合题意;
对于B中,函数在上单调递减,单调递增,所以B符合题意;
对于C中,函数在上单调递减,所以C不符合题意;
对于D中,时函数在上单调递减,所以D符合题意.
故选:D.
三:证明或判断函数的单调性
因为对任意,,当时,都有,所以在上为增函数,
A选项,在上为增函数,不符合题意.
B选项,在上为减函数,不符合题意.
C选项,在上为增函数,符合题意.
D选项,在上为增函数,不符合题意.
故选:C.
因为在上单调递增,且恒成立,
可知函数在上单调递减,
当时,,所以函数在上的最小值为.
故选:B.
选项A:,开口向下,对称轴为,所以函数在区间上为减函数,故选项A错误;
选项B:,所以函数在区间上为增函数,故选项B正确;
选项C:可以看作由函数向左平移一个单位得到,所以函数在区间上为减函数,故选项C错误;
选项D:,开口向下,对称轴为,所以函数在区间上为减函数,故选项D错误.
故选:B.
对于AB:函数满足,或,特值并不具有任意性,
所以区间端点值的大小关系并不能确定函数在区间上的单调性,故A,B错误;
对于C:区间和有交集,故函数在区间内单调递增,故C正确,
对于D:区间和没有交集,故不能确定函数在区间内的单调性.
例如在和上递增,但,故D错误.
故选:C.
四:求函数的单调区间
由可得且,
因为开口向下,其对称轴为,
所以的减区间为和
所以的单调增区间为和
故选:C
由,得,解得,
令,则,
因为在上递增,在上递减,而在上递增,
所以在上递增,在上递减,
所以的单调递增区间是,
故选:D
解:因为,对称轴为 ,又开口向下,
又,∴函数的单调递增区间为.
故答案为:

函数图象如图所示.
由图象可知,函数的单调递增区间为,单调递减区间为.
五:函数单调性的应用
解:由题意可得,解得,
∴整数a的取值可以为.
故选:A
函数的对称轴为,
由题意可知,解得,
所以实数的取值范围是.
故选:B.
由题意知,解得
故选:D
为上的减函数, 时, 递减,即,①, 时, 递减,即,②且 ,③ 联立①②③解得, .
故选:C.
六:利用单调性比较大小或解不等式
在上单调递增,,,解得:,
实数的取值范围为.
故选:C.
解:由题意,可知:
∵对任意的x1,x2且x1≠x2都有[f(x1)﹣f(x2)](x1﹣x2)>0成立,
∴函数f(x)在定义域R上为增函数.
又∵f(x2+1)>f(m2﹣m﹣1)对x∈R恒成立,
∴x2+1>m2﹣m﹣1,
∴m2﹣m﹣1<1,
即:m2﹣m﹣2<0.
解得﹣1<m<2.
故选:A.
解:函数在区间上单调递增,则任意两个不相等的实数,与应该同号,所以,
故选:C.
由题意,函数在上为减函数.
当时,,,,
则,,,故ACD错误;
对于B,因为,所以,
所以,故B正确;
对于E,因为,所以,故E正确.
故选:BE.
函数的最大(小)值
一:利用图象求函数最值
∵函数是偶函数,而且在[0,7]上为增函数,
∴函数在[-7,0]上是减函数.
又∵函数在x=7和x=-7的左边是增函数,右边是减函数,且f(7)=f(-7),
∴最大值为f(7)=f(-7)=6.
故选B.
试题分析:由图观察可知函数在和上单调递增,在上单调递减.
所以函数在处取的最大值为.
又由图观察可知,所以函数的最小值为.故C正确.
由题意,函数表示开口向上,且对称轴为的抛物线,
要使得当,函数的最大值为,则满足且,
解得,所以实数的取值范围是.
故选D.
由题:,函数在单调递减,在单调递减,
可以看成函数向右平移1个单位,再向上平移1个单位,作出图象:
所以函数在递减,在递减,,,
所以函数的值域为.
故答案为:
二:利用单调性求函数最值
y=在[2,3]上单调递减,所以x=3时取最小值为,
故选:B.
函数在区间是减函数,
所以时有最大值为1,即A=1,
时有最小值,即B=,
则,
故选:A.
由知,在上是增函数,所以在上递增,所以.
故选:C
∴或∴k=20.选C.
三:求二次函数的最值
由题意,函数,
可得函数在区间上单调递增,在区间上单调递减,
当时,则函数在区间上单调递增,其最小值为,
显然不合题意;
当时,则函数在区间上单调递增,在区间上单调递减,
故函数的最大值为,
因为,令,即,即,
解得或,
又因为,所以.
故选: D.
设,则,则,又,∴,∴当时,取到最小值为.
由题意得:二次函数()的对称轴为,且函数图象开口向上,
则该函数在上单调递减,
所以,
故选:BCD.
解:因为函数,函数的对称轴为,开口向上,
又在区间上的最小值为,
所以当时,,解得(舍去)或;
当,即时,,解得(舍去)或;
当,即时,.
综上,的取值集合为.
故选:BC.
四:判断二次函数的单调性和求解单调区间
函数,二次函数图像开口向上,
若在区间上递增,
则对称轴x=-a,
即a
故选D.
函数的对称轴为,
由于在上是减函数,所以.
故选:B
函数的对称轴为,
由于在上是减函数,所以.
故选:B
因为函数在区间上单调递减,在上单调递增,
所以在R上的最小值为,且,
(1)当时,由的值域为,可知必有
所以且,解得,此时
(2)当时,由的值域为,可知必有
所以且,解得,此时
综上可知,
所以的可能的取值为
故选:BCD
五:函数最值的实际应用
1 由图知:的定义域为,值域为,A、B错;
显然在分别递增,但在定义域上不单调,C对;
显然,对应自变量x不唯一,D错.
故选:C
∵对任意的x1,x2∈(0,+∞),都有,
∴函数f(x)在(0,+∞)上单调递减,
又∵,
∴,
又∵f(x)是偶函数,∴f(﹣)=f().
∴.
故选:A.
由容器的形状可知,在相同的变化时间内,高度的增加量越来越小,
故函数的图象越来越平缓,
故选:D.
由甲,乙图得进水速度为1,出水速度为2,
对A,由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以A正确;
对BC,从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故B错误C正确;
对D,当两个进水口同时进水,出水口也同时出水时,水量保持不变;也可由题干中的“至少打开一个水口”知D错,故D错误.
故选:AC
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览