资源简介 泰州市民兴中英文学校2025年秋学期八年级月度独立作业数学试题(考试时间:120分钟 满分:150分)注意:所有答案必须填写在答题卡上,写在试卷上无效一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案在答题卡相应的位置上)1. 在下列实数中:,0,,﹣3.1415,,π,,0.3141141114…(每两个4之间1的个数依次加1),无理数的个数是( ▲ )A.1个 B.2个 C.3个 D.4个2. “水乡慢城,早茶之都”2025年泰州市文旅行业势头强劲,经综合测算,五一假期间,我市累计接待游客288.55万人次,按可比口径较2020年增长43.3%.近似数288.55万精确到( ▲ )A.十分位 B.百分位 C.百位 D.千位3. 如图,若记北京为A地,莫斯科为B地,雅典为C地,若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在( ▲ )A.三边垂直平分线的交点 B.三边中线的交点C.三条角平分线的交点 D.三边上高的交点4. 1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE,EB在一条直线上,证明中用到的面积相等关系是( ▲ )A.S△EDA=S△CEB B.S四边形AECD=S四边形DEBCC.S△EDA+S△CEB=S△CDE D.S△EDA+S△CDE+S△CEB=S四边形ABCD5. 如图,在Rt△ABC中,∠ACB=90°,∠ABC=25°,O为斜边中点,将线段OA绕点逆时针旋转α(0°<α<90°)至OP,若CB=CP,则a的值为( ▲ )A.80° B.65° C.50° D.40°6. 如图所示,在Rt△ABC中,AC=6,BC=8,按下列步骤作图:第一步:在AB、AC上分别截取AD、AE,使AD=AE;第二步:分别以点D和点E为圆心、适当长(大于DE的一半)为半径作圆弧,两弧交于点F;第三步:作射线AF交BC于点M;第四步:过点M作MN⊥AB于点N.下列结论成立的是( ▲ )A.MA=MB B.CM=4 C.BN=3 D.S△AMB=15二、填空题(本大题共10小题,每小题3分,共30分,请将答案在答题卡相应的位置上。)7. 自行车中间的支架设计为三角形是因为三角形具有 ▲ .8. 如图,AC⊥BC,BD⊥BC,垂足分别为C,B,要根据“HL”证明Rt△ABC≌Rt△DCB,应添加的条件是 ▲ .9. 已知x,y是实数,则6x﹣y的立方根是 ▲ .10. 如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2= ▲ .11. 如图,在四边形ABCD中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作四个正方形,面积分别记为S1,S2,S3,S4.若S1+S4=25,S3=8,则S2= ▲ .12. 如图,数轴上表示1,的点分别为A,B,且AC=AB,则点C所表示的数是 ▲ .13. 如图,△ABC的面积为6cm2,AP与∠ABC的平分线垂直,垂足是点P,则△PBC的面积为 ▲ cm2.14. 如图,△ABC是等边三角形,BC=BD,∠BAD=25°,则∠BCD的度数为 ▲ .15. 设a、b分别是等腰三角形的两条边的长,m是这个三角形的周长,当a、b、m满足方程组,m的值是 ▲ .16. 如图,在△ABC中,AC=5,BC=4,∠ABC=60°,点D在AB上,点E在AC上且AD=CE,连接BE、CD,则CD+BE的最小值为 ▲ .三.解答题(共10题,共102分,请将答案在答题卡相应的位置上。)17. (本题满分8分)计算:(1); (2).18. (本题满分8分)求下列各式中x的值:(1)16x2=64; ( 2 )(x﹣2)3﹣27=0.19. (本题满分10分)已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求3a+b﹣c的平方根.20. (本题满分10分)如图,在△ABC中,∠BAC的平分线交BC于点D,过点D作DE∥AB交AC于点E.(1)求证:AE=DE;(2)若∠C=100°,∠B=40°,求∠AED的度数.21. (本题满分10分)如图,在每个小正方形边长为1的网格中,A,B,C为格点,点P为线段AB上一点,仅用无刻度的直尺在给定的网格中画图(友情提醒:保留作图痕迹,并加深).(1)AB的长等于 ;(2)在图1中,画出△ABC的中线BD;(3)如图2,点M在BC上,连接AM,在线段BM上画点Q,使得BP=BQ.(本题满分10分)如图,四边形CEDF,∠CED=∠EDF=∠DFC=∠FCE=90°,CE=DE=DF=CF,A是边DE上一点,过点C作BC⊥AC交DF延长线于点B.(1)求证:BD=AE+CE;(2)设△ACE三边分别为a、b、c,利用此图证明勾股定理.23. (本题满分10分)如图,在△ABC中,∠ACB=90°,AB=13,BC=5,点P从点A出发,沿射线AC以每秒2个单位长度的速度运动.设点P的运动时间为t秒(t>0).(1)当点P在AC的延长线上运动时,CP的长为 ;(用含t的代数式表示)(2)若点P在∠ABC的角平分线上,求t的值;(3)在整个运动中,直接写出△ABP是等腰三角形时t的值.24. (本题满分10分)在八年级上册数学课本中,我们学习了三角形边和角关系以及三角形中常见的线段。(1)小民同学利用“三角形的任意两边之和大于第三边”这一知识点发现,若P是△ABC内的一点,连接PA,PB,则AP+BP<AC+BC,请你证明这个结论。(2)接着小民又发现,如果PA,PB分别是∠CAB和∠CBA的平分线,连接PC,则PC是∠ACB的角平分线,小民的发现正确吗?请说明你的理由。(3)就△ABC的面积问题,小民和小兴两位同学产生了分歧,在(2)的条件下,已知△ABC的周长为18,点P到AB的距离为.小民认为仅知道周长无法求出△ABC的面积,而小兴认为可以。你同意谁的看法?若同意小民,请说明理由。若同意小兴,请求出△ABC的面积。25. (本题满分12分)对于实数a,我们规定:用符号表示不大于的最大整数,称为a的根整数,例如:,.(1)仿照以上方法计算: = ;= .(2)若,写出所有满足题意的x的整数值 .如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2次,这时候结果为1.(3)对200连续求根整数, 次之后结果为1.(4)只需进行4次连续求根整数运算后结果为1的所有正整数中,最大的是 .26. (本题满分14分)图① 图②图③ 图④【模型感知】(1)如图①,△ABD和△AEC都是等边三角形,求证:BE=DC;(2)如图②,在Rt△ABC中,已知∠C=90°,∠A=30°,求证:BC = AB【模型应用】(3)已知∠ABC=60°,点F在直线BC上,以AF为边在直线BC上方作等边三角形AFE,过点E作ED⊥AB于点D.如图③,若点F在点B右侧,求证:AB+BF=2BD.【类比探究】如图④,在(2)的条件下,若点F在点B左侧,且AB-BF = ,则BD= ▲ .泰州市民兴中英文学校2025年秋学期八年级月度独立作业数学试题解析选择题:DCADAD稳定性8.AB=CD9.10.135°11.1712.13.314.55°15.5或16.17.(1)7.1································································4分(2)···························································4分18.(1)= ,= ···············································4分(2)x=5··································································4分19.a=5 ··································································2分b=2 ··································································4分C=3 ·································································6分···································································10分20.证明略·································································5分140°··································································5分(1)5·······································································3分(2)··········································································6分(3)·········································································10分22.(1)略······································································5分(2)略······································································10分23.(1)2t-12··································································3分(2)······································································7分(3)12, ,······················································10分(各1分)24.略·····································································3分(2)正确,证明略························································6分(3)小兴, ····························································10分(1)4,45·····························································4分(各2分)(2)1,2,3·······················································7分(3)3·······························································9分(4)65535·························································12分26.(1)证明略··························································3分(2)证明略··························································6分(3)证明略·························································10分(3) ·····························································14分 展开更多...... 收起↑ 资源列表 25秋八年级月度独立作业数学试题.docx 八年级月考数学答案.docx