资源简介 人教版A2025~2026学年度第一学期第一阶段巩固练习八年级数学注意事项:1.本套题共6页,建议完成时间120分钟,满分120分;2.如有答题纸,请在答题纸上作答;如无答题纸,请将第一部分答案填写在答题栏内,第二部分直接在题上作答;3.答题前,请将装订线内的项目填写清楚。书写要工整、规范、美观。题号 一 二 三第一部分(选择题 共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.若一个三角形的两边长为3和4,则第三边长可能是( )A.1 B.5 C.7 D.102.如图是2024年巴黎奥运会和残奥会的吉祥物“弗里热”,它的座右铭是“独行快,众行远”,下列与该图片是全等的是( )A. B. C. D.3.如图,一张三角形纸片被不小心撕掉了一个角,则撕掉的角的度数是( )A.50° B.60° C.80° D.100°4.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,若∠2=55°,则∠3的度数为( )A.15° B.20° C.25° D.30°5.如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是( )A.SAS B.SSS C.AAS D.ASA6.如图,在△ABC中,∠BAC=90°,AD、AE分别为△ABC的高线和中线,则图中的直角三角形共有( )A.2个 B.3个 C.4个 D.5个7.如图,在△ABC中,点D为BC的中点,连接AD且AD⊥AC于点A,若AC=3,AD=2,贝△ABC的面积为( )A.4 B.5 C.6 D.78.如图,点A,C分别为∠EBF两边上的点,∠ABC,∠EAC的平分线BP,AP交于点P,过点分别作PM⊥BE于点M,PN⊥BF于点N,连接PC,若AC=12,AM=8,则CN的长为( )A.10 B.8 C.6 D.4【第一部分答题栏】题号 1 2 3 4 5 6 7 8答案第二部分(非选择题 共96分)二、填空题(共6小题,每小题3分,计18分)9.若△ABC的三个内角的度数比为1∶2∶3,则△ABC的形状是 .10.乐山致江路大桥于2024年12月25日顺利通车,许多市民前往游观,桥上斜拉索与桥塔主梁共同构成了大量三角形结构,那么在数学上体现的知识是 .11.如图,已知∠ABC=∠DCB,要使△ABC≌△DCB,还需要添加一个条件,则这个条件可以 .(写出一个即可)12.为倡导绿色出行,西安市在地铁口设置了共享单车服务,如图是其结构示意图,支架AB和CD与地面l平行,若∠BCD=60°,∠BAC=55°,当AM平行于支撑杆CE时,∠MAC的度数为 .13.如图,点B,C,D在同一直线上,若△ABC≌△CDE,∠B=45°,则∠ACE的度数为 .14.Rt△ABC在平面直角坐标系中的位置如图所示,点A在y轴上,∠BAC=90°,AB=AC,点,,则点A的坐标为 .三、解答题(共12小题,计78分.解答应写出过程)15.(本题满分5分)如图,已知△ABC≌△DCB,求证:∠ABD=∠DCA.16.(本题满分5分)已知△ABC的三边长分别为a,b,c,若a=2,b=5,且c为奇数,求c的值.17.(本题满分5分)如图,在平面直角坐标系中,已知点,,求△ABO的面积.18.(本题满分5分)如图,已知△ABC,请用尺规作图法,在△ABC的边AC上求作一点D,使得∠ABD=∠C.(保留作图痕迹,不写作法)19.(本题满分5分)如图,在Rt△ACE和Rt△BDF中,∠C=∠D=90°,点C、F、E、D在一条直线上,CF=DE,AE=BF,求证:AC=BD.20.(本题满分5分)在边长为1的正方形网格中,建立如图所示的平面直角坐标系,△的三个顶点都在格点上,在网格中,作出格点△BCD,使△BCD与△ABC全等,且写出点D的坐标.(作出一个符合要求的△BCD即可)21.(本题满分6分)如图,在△ABC中,AD⊥BC于点D,若∠B=39°,∠BAC=65°.(1)求∠BAD的度数;(2)若CE是△ABC的角平分线,求∠ECB的度数.22.(本题满分7分)如图,△ABC≌△DEB,点E在AB上,已知AB=10,BC=5,∠C=54°,∠D=26°,求:(1)AE的长度;(2)∠AED的度数.23.(本题满分7分)如图,小雅来到大明湖畔与美丽的花灯合影,她利用所学知识设计了一个方案测量花灯的边缘点A与围栏旁的点B的距离,小雅从点B处先沿AB方向走3米至点C,又沿着与BC垂直的方向走了4米至点D,并放置了一个标记物,接着往前继续走4米至点E,最后从点E处向左沿着与EC垂直的方向走了一定距离至点F,此时,她看到标记物正好遮住了花灯边缘的点A处,经过测量,EF=5米,请你帮小雅求出AB的长.24.(本题满分8分)电脑支架是我们工作学习的帮手,也隐藏着数学问题,如图①是从侧面看一台笔记本电脑放在电脑支架上的平面图,如图②是图①的简易示图,若笔记本电脑的屏幕AB垂直于支架底座CD的位置.(1)∠ABC与∠BCD的数量关系是 ,并写出证明过程;(2)若图②中的撑杆FE⊥BC于点E,试探索∠ABC与∠DFE的数量关系?并说明理由.25.(本题满分8分)我们规定:两组边相等及其夹角互补的两个三角形叫兄弟三角形,如图,在△OAC和△OBD中,OA=OB,OC=OD,∠AOC=60°,∠BOD=120°.(1)△OAC和△OBD 兄弟三角形;(填“是”或“不是”)(2)取BD的中点P,连接OP,求证:AC=2OP,小林同学根据求证的结论,想起了老师上课进的“中线倍延”的辅助线构造方法,解决了这个问题,试帮小林同学完成证明过程.26.(本题满分12分)问题情境(1)如图,在△ABC中,CD平分∠ACB交AB于点D,AE⊥CD于点E,延长AE交BC于点F,求证:△ACE≌△FCE;实际应用(2)如图是一块肥沃的三角形土地,其中边AB与灌渠相邻,唐叔叔想在这块地中划出一块直角三角形土地进行水稻试验,故进行如下操作:①取∠ABC的平分线BD;②过点A作AD⊥BD于点D,已知BC=45,AB=30,△ABC的面积为90,请求出△ABD的面积;拓展延伸(3)如图,在△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB交AB于点D,BE⊥CD交CD延长线于点E,试探究BE和CD之间的数量关系,并证明你的结论. 展开更多...... 收起↑ 资源预览