资源简介 专题24.2 垂直于弦的直径(举一反三讲义)【人教版】【题型1 利用垂径定理判断正误】 2【题型2 利用垂径定理求角度】 4【题型3 利用垂径定理求线段长度】 8【题型4 利用垂径定理求面积】 12【题型5 利用垂径定理求坐标】 15【题型6 利用垂径定理求平行弦问题】 20【题型7 利用垂径定理求同心圆问题】 24【题型8 利用垂径定理求整点个数】 28【题型9 垂径定理的实际应用】 32【题型10 利用垂径定求最值】 361. 圆的对称性圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.2. 垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧.3. 垂径定理的推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.由垂径定理以及推论可知,如果一条直线具备①经过圆心(直径);②垂直于弦;③平分弦(非直径);④平分弦所对的优弧;⑤平分弦所对的劣弧中任意两条性质,就具备其他三条性质,简称“知二推三”.【题型1 利用垂径定理判断正误】【例1】如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是( )A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°【答案】B【分析】根据垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧求解.【详解】解:∵直径AB⊥弦CD∴CE=DE故选B.【点睛】本题考查垂径定理,本题属于基础应用题,只需学生熟练掌握垂径定理,即可完成.【变式1-1】(24-25九年级上·浙江温州·期中)下列命题正确的是( )A.平分弦所对的两条弧的直线必垂直于弦B.垂直于弦的直线平分弦C.平分弦的直线必平分弦所对的两条弧D.平分弦的直径必平分弦所对的两条弧【答案】A【分析】本题考查了命题与定理,垂径定理,熟练掌握垂径定理及其推论是解决问题的关键.根据垂径定理和垂径定理的推论进行判断即可.【详解】解:A、平分弦所对的两条弧的直线必垂直于弦,符合题意;B、垂直于弦的直径平分弦,故原说法错误,不符合题意;C、平分弦的直径必平分弦所对的两条弧,故原说法错误,不符合题意;D、平分弦不是直径的直径必平分弦所对的两条弧,故原说法错误,不符合题意;故选:A.【变式1-2】(2025·河南新乡·三模)如图,、在上,连接,,.的平分线交于点,交于点,连接.下列结论错误的是( )A. B. C. D.【答案】C【分析】该题考查了垂径定理,根据垂径定理解答即可.【详解】解:∵的平分线交于点,是半径,∴,,,,故A、B、D正确;选项C不能证明,故选:C.【变式1-3】如图,AB为半圆O的直径,AC,AD都是弦,且AC平分∠BAD,则下列各式正确的是( )A.AB+AD=2AC B.AB+AD<2ACC.AC=AB AD D.AC<AB AD【答案】B【分析】过点O作OM⊥AD于点M,交AC于点N,连接OC,根据垂径定理及三角形三边的关系求解判断即可.【详解】解:过点O作OM⊥AD于点M,交AC于点N,连接OC,如图所示:则∠OMA=90°,AM=DM,∴AN>AM=AD,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAD,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴ADOC,∴∠OMA=∠CON=90°,∴CN>OC=AB,∴AB+AD<2(CN+AN)=2AC,故选:B.【点睛】此题考查了垂径定理,熟记垂径定理并作出合理的辅助线是解题的关键.【题型2 利用垂径定理求角度】【例2】已知⊙O的半径为2,弦长分别为和,则的度数为( )A. B. C.或 D.或【答案】C【分析】根据圆的轴对称性知有两种情况:两弦在圆心的一侧和两弦在圆心的两侧,再根据垂径定理,含30度角的直角三角形的性质和等腰直角三角形的判定和性质解答即可.【详解】解:过点O作于E,于D,分类讨论:当两弦在圆心的同一侧,如图, ∴,,,∴,,∴,,∴,,∴;当两弦在圆心的两侧,如图, ∴,,,∴,,∴,,∴,,∴.的度数为或.故选C.【点睛】本题考查垂径定理,含30度角的直角三角形的性质,等腰直角三角形的判定和性质.利用分类讨论的思想并正确的画出图形和作出辅助线是解题关键.【变式2-1】如图,是的直径,是的弦,且,,则的度数为( ) A. B. C. D.【答案】D【分析】本题考查圆的性质及应用,解题的关键是掌握垂径定理及推论.证明,利用三角形内角和定理求解.【详解】解:∵是直径,,,,,故选:D.【变式2-2】(24-25九年级下·湖南娄底·期中)如图,是的弦,半径,,则的度数为( ) A. B. C. D.【答案】C【分析】本题考查了垂径定理、全等三角形的判定和性质、等边三角形的判定与性质.连接,利用全等三角形的性质证明是等边三角形即可解决问题.【详解】解:如图,连接,设交于K. ∵,∴,∵,∴,∵,∴,∴,∵,∴,∵,∴,∴是等边三角形,∴,故选:C.【变式2-3】如图,已知的两弦相交于,且点为的中点,若,则的度数为 .【答案】/58度【分析】本题主要考查运用垂径定理求值,连接交于点F,则由垂径定理得,由得,再根据直角三角形两锐角互余可求值.【详解】解:连接交于点F,如图,∵点A为的中点,∴,∴,∵,∴,∴即,故答案为:.【题型3 利用垂径定理求线段长度】【例3】(24-25九年级上·陕西西安·阶段练习)如图,经过点,交y轴于点A,若,弦长为( )A.8 B.10 C.16 D.20【答案】C【分析】本题考查了垂径定理,关键是熟练掌握垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.过P点作于H点,根据垂径定理得,然后利用P点坐标得到,从而得到.【详解】解:过P点作于H点,如图,则,∵,∴,∴.故选:C.【变式3-1】(24-25九年级上·贵州遵义·期中)如图,在中,于点,,,则最长的弦长是( )A. B. C. D.【答案】D【分析】本题考查垂径定理和勾股定理,先利用垂径定理和勾股定理求出的长,再求圆的直径即可.【详解】在中,,∴,在中,,∴的直径为,即最长的弦长是.故选:D.【变式3-2】(2025·湖南长沙·三模)如图,、、是上的点,,垂足为点,,若,则的长为( )A. B.3 C. D.4【答案】B【分析】通过连接,利用垂径定理、平行线性质和等腰三角形性质,推导出与的关系来求解.【详解】解:连接,,∴, .,,.又,.∴是等边三角形,∴,是等边三角形,.故选: .【点睛】本题主要考查了垂径定理、平行线的性质、等腰三角形的性质以及等边三角形的判定及性质,熟练掌握垂径定理和利用角度、边的关系推导线段间的数量关系是解题的关键.【变式3-3】(24-25九年级下·湖北武汉·阶段练习)如图,已知点A,C,D在上,点B在内,和均为直角,,,,则的半径为( ) A.5 B. C. D.【答案】C【分析】过点O作于点E,延长,二线交于点F,得到四边形是矩形,设则,连接,利用勾股定理解答即可.【详解】解:过点O作于点E,延长,二线交于点F,∵和均为直角,∴四边形是矩形,∴,,,∵,,,∴,,,设则,连接,∴,∵,∴,∴,解得,∴,故选:C.【点睛】本题考查了垂径定理的应用,矩形的判定和性质,圆的性质,勾股定理,解方程,熟练掌握垂径定理,勾股定理是解题的关键.【题型4 利用垂径定理求面积】【例4】如图,在半径为1的中有三条弦,它们所对的圆心角分别为,,,那么以这三条弦长为边长的三角形的面积是 . 【答案】【分析】如图,连接,作于,则,,是等边三角形,是等腰直角三角形,,,,由,可知该三角形是以为直角边的直角三角形,然后求面积即可.【详解】解:如图,连接,作于, ∴,∴,∴是等边三角形,是等腰直角三角形,∴,,∵,,∴,,∴,由勾股定理得,∴,∴三条弦组成的三角形的三条边的长为1,,,∵,∴该三角形是以为直角边的直角三角形,∴面积为,故答案为:.【点睛】本题考查了垂径定理,等腰三角形的判定与性质,等边三角形的判定与性质,含的直角三角形,勾股定理,勾股定理逆定理等知识.正确求解线段长度是解题的关键.【变式4-1】(24-25九年级上·陕西渭南·期中)如图,是的直径,弦于点,连接,若,,则的面积是( )A. B. C. D.【答案】A【分析】本题主要考查了圆的基本性质、垂径定理、勾股定理等知识点,掌握垂径定理是解题的关键.由垂径定理可得,再根据圆的性质可得,再根据勾股定理列方程求得,即,最后根据三角形的面积公式求解即可.【详解】解:∵是的直径,弦于点,∴,∵,,∴,解得:,∴,∴的面积是.故选:A.【变式4-2】(2025·湖北·二模)如图,已知矩形的顶点B,C在半径为5的半圆O上,顶点A,D在直径上.若,则矩形的面积等于( )A.21 B.22 C.23 D.24【答案】D【分析】本题考查矩形的判定与性质、勾股定理、垂径定理,熟练掌握矩形的判定与性质是解答的关键.连接,过于H,则,可证明四边形是矩形得,则,再利用勾股定理求得,进而利用矩形性质求解即可.【详解】解:连接,过于H,则,,∵矩形的顶点B,C在半径为5的半圆O上,,∴,,∴四边形是矩形,∴,则,在中,,∴矩形的面积等于,故选:D.【变式4-3】已知的三个顶点都在圆O上,点O到的距离为3,且,则的面积= .【答案】或8【分析】本题考查了垂径定理以及等腰三角形的性质,据此得,,且在上,结合勾股定理以及分类讨论思想即可作答.【详解】解:如图所示:连接交于点D 因为,所以,,且在上因为点O到的距离为3,所以,当点在劣弧上时,则,,所以的面积,当点在优弧上时,即为点,则,那么,所以的面积,综上:的面积为或8,故答案为:或8.【题型5 利用垂径定理求坐标】【例5】(2025·江西南昌·一模)如图,点,,半径为的经过点,,则点的坐标为( )A. B. C. D.【答案】D【分析】本题考查矩形的判定与性质,垂径定理,勾股定理,熟练掌握垂径定理及其应用是解题的关键.连接,过点作于点,轴于点,可得四边形是矩形,得出,,利用,,可得,,,利用垂径定理可得,则可得,利用勾股定理可得,即可得.【详解】解:如图,连接,过点作于点,轴于点,又∵,∴四边形是矩形,∴,,∵,,∴,,∴,∵,∴,∴,∵的半径为,∴,∴,∴,∴,故选:D.【变式5-1】(24-25九年级上·全国·期末)如图,在平面直角坐标系中,半径为的经过点,,则点的坐标为 .【答案】【分析】本题考查了坐标与图形,垂径定理,勾股定理,解题的关键是正确作出辅助线.过点作于点,连接,根据垂径定理得到,由,,可得,,,推出,再根据勾股定理求出,即可求解.【详解】解:如图,过点作于点,连接,,,,,,,,,,,的坐标为,故答案为:.【变式5-2】(24-25九年级上·辽宁葫芦岛·期中)在平面直角坐标系中,的圆心坐标是,半径为,函数的图象被截得的弦的长为,则的值是 .【答案】/【分析】本题考查了一次函数的综合应用,涉及圆的性质,垂径定理,等腰直角三角形的性质,勾股定理等,求得点的坐标是解题的关键.作轴于点,交于点,作于点,连接,由于,,得到点的坐标为,则,为等腰直角三角形,根据垂径定理得到,根据勾股定理得到,则,即可得到答案.【详解】解:如图,作轴于点,交于点,作于点,连接,的圆心坐标是,,把代入得,点的坐标为,,为等腰直角三角形,,为等腰直角三角形,,,,,,,故答案为: .【变式5-3】(24-25九年级上·山东淄博·期末)如图,在平面直角坐标系中,正方形的顶点,分别在轴,轴上,以为弦的与轴相切,若点的坐标为,则圆心的坐标为( )A. B. C. D.【答案】A【分析】本题考查了垂径定理、坐标与图形性质、勾股定理及正方形的性质.过点M作于D,连接.设的半径为R,因为四边形为正方形,顶点A,C在坐标轴上,以边为弦的与x轴相切,点A的坐标为,所以,,在中,利用勾股定理即可得到关于R的方程,解之即可.【详解】解:过点M作于D,交于点E.连接,设的半径为R.∵以边为弦的与x轴相切,,∴,∴是直径的一部分;∵四边形为正方形,顶点A,C在坐标轴上,点A的坐标为,∴,;∴(垂径定理);在中,根据勾股定理可得,∴,解得:.∴.故选:A.【题型6 利用垂径定理求平行弦问题】【例6】在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了( )cmA.1 B.3 C.3或4 D.1或7【答案】D【分析】分两种情况求解:①如图1,宽度为8cm的油面,作与的交点为,可知,,,在中,由勾股定理得,解得的值,在中,由勾股定理得,解得的值,计算即可;②如图2,宽度为8cm的油面,作与的交点为,连接,由题意知,,,在中,由勾股定理得,在中,由勾股定理得,计算即可.【详解】解:分两种情况求解:①如图1,宽度为8cm的油面,作与的交点为由题意知,,在中,由勾股定理得在中,由勾股定理得∴②如图2,宽度为8cm的油面,作与的交点为,连接由题意知,,在中,由勾股定理得在中,由勾股定理得∴∴油面AB上升到CD,上升了1cm,油面AB上升到EF,上升了7cm;故选D.【点睛】本题考查了圆的垂径定理,勾股定理.解题的关键在于对两种情况全面考虑.【变式6-1】如图,矩形ABCD与圆心在AB上的☉O交于点G,B,F,E, GB =5,EF =4,那么AD =_____.【答案】【分析】连接OF,过点O作OH⊥EF,垂足为H,根据垂径定理,在△OHF中,勾股定理计算.【详解】如图,连接OF,过点O作OH⊥EF,垂足为H,则EH=FH=EF=2,∵GB=5,∴OF=OB=,在△OHF中,勾股定理,得OH=,∵四边形ABCD是矩形,∴四边形OADH也是矩形,∴AD=OH=,故答案为:.【点睛】本题考查了垂径定理、勾股定理,熟练掌握两个定理是解题的关键.【变式6-2】(24-25九年级上·黑龙江牡丹江·期末)已知的半径为,弦平行于弦和之间的距离是 .【答案】7或17【分析】本题主要考查了垂径定理,勾股定理,分当的圆心O位于、之间时,当的圆心O不在两平行弦、之间时,两种情况分别利用勾股定理和垂径定理求出点O到和的距离,据此可得答案.【详解】解:如图,当的圆心O位于、之间时,作于点E,并延长,交于F点.分别连接、.∵,∴,∵,∴,在中,由勾股定理得,在中,由勾股定理得,∴,∴和之间的距离为17;如图所示,当的圆心O不在两平行弦、之间(即弦、在圆心O的同侧)时,同理可得:,∴,∴和之间的距离为7;综上所述,和之间的距离为7或17.故答案为:7或17.【变式6-3】(24-25九年级上·河北秦皇岛·期中)如图,的半径为3,弦的直角顶点B在弦上运动(可与点M,N重合),点A,C始终在上,且.关于嘉嘉和淇淇的说法判断正确的是( )嘉嘉说:“当点B与点M,点N重合时,的度数是.”淇淇说:“连接,当与弦平行时,点B到的距离为2.”A.嘉嘉正确,淇淇错误 B.嘉嘉错误,淇淇正确C.嘉嘉正确,淇淇也正确 D.嘉嘉错误,淇淇也错误【答案】A【分析】本题主要考查了垂径定理,勾股定理,等边三角形的性质与判定,圆的基本性质,,当点B与点M重合时,连接,可证明是等边三角形,据此求出的度数,进一步可求出的度数;过点O作于D,连接,利用垂径定理和勾股定理求出的长即可求出当与弦平行时,点B到的距离,据此可得答案.【详解】解:如图所示,当点B与点M重合时,连接,∵,∴是等边三角形,∴,∵,∴;同理可得当点B与点N重合时,,故嘉嘉的说法正确;如图所示,过点O作于D,连接,∴,∴,∵,∴点B到的距离为,故淇淇说法错误,故选:A.【题型7 利用垂径定理求同心圆问题】【例7】 如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧.已知每个台阶宽度为32cm(即相邻两弧半径相差32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为 cm【答案】134【分析】由于所有的环形是同心圆,画出同心圆圆心,设弧AB所在的圆的半径为r,利用勾股定理列出方程即可解答.【详解】解:设弧AB所在的圆的半径为r,如图.作OE⊥AB于E,连接OA,OC,则OA=r,OC=r+32,∵OE⊥AB,∴AE=EB=100cm,在RT△OAE中,在RT△OCE中,,则解得:r=134.故答案为:134.【点睛】本题考查垂径定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.【变式7-1】如图,两个圆都以点O为圆心.求证:.【答案】过点O作于E,根据垂径定理可得,,即可得到结果.【详解】过点O作OE⊥AB于E,在小⊙O中,∵OE⊥CD,∴EC=ED.在大⊙O中,∵OE⊥AB,∴EA=EB.∴AC=BD.【点睛】解答本题的关键是熟练掌握垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.【变式7-2】如图,两个同心圆的半径分别为2和4,矩形的边和分别是两圆的弦,则矩形面积的最大值是 .【答案】16【分析】过点O作OP⊥AB于P并反向延长交CD于N,作OM⊥AD于点M,连接OA、OD,根据面积之间的关系得出S△AOD=S矩形APND=S矩形ABCD,从而得出S矩形ABCD最大时,S△AOD也最大,过点D作AO边上的高h,根据垂线段最短可得h≤OD,利用三角形的面积公式即可求出S△AOD的最大值,从而求出结论.【详解】解:过点O作OP⊥AB于P并反向延长交CD于N,作OM⊥AD于点M,连接OA、OD∴AO=2,OD=4,四边形APND和四边形PBCN为矩形,PN⊥CD,∴OM=AP根据垂径定理可得:点P和点N分别为AB和CD的中点,∴S矩形APND=S矩形ABCD∵△AOD的高OM等于矩形APND的宽,△AOD的底为矩形APND的长∴S△AOD=S矩形APND=S矩形ABCD∴S矩形ABCD最大时,S△AOD也最大过点D作AO边上的高h,根据垂线段最短可得h≤OD(当且仅当OD⊥OA时,取等号)∴S△AOD=AO·h≤AO·OD=×2×4=4故S△AOD的最大值为4∴S矩形ABCD的最大值为4÷=16故答案为:16.【点睛】此题考查的是垂径定理、各图形面积的关系和三角形面积的最值问题,掌握垂径定理、利用边的关系推导面积关系和垂线段最短是解决此题的关键.【变式7-3】高致病性禽流感是比SARS病毒传染速度更快的传染病.(1)某养殖场有8万只鸡,假设有1只鸡得了禽流感,如果不采取任何防治措施,那么,到第二天将新增病鸡10只,到第三天又将新增病鸡100只,以后每天新增病鸡数依次类推,请问:到第四天,共有多少只鸡得了禽流感病?到第几天,该养殖场所有鸡都会被感染?(2)为防止禽流感蔓延,政府规定:离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有的禽类强制免疫;同时,对扑杀区和免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在该免疫区内有多少千米【答案】(1)6;(2).【分析】(1)根据题目的叙述,第一天的数是1,第二天是11,第三天是111,因而第几天就是有几个;(2)过点O作OE⊥CD交CD于E,连接OC、OA,在Rt△OCE中,就可以求出OE,在Rt△OAE中求出AE,进而求出AC,进而求出.【详解】解:(1)由题意可知,到第4天得禽流感病鸡数为1+10+100+1000=1111,到第5天得禽流感病鸡数为10000+1111=11111到第6天得禽流感病鸡数为100000+11111=111111>80000所以,到第6天所有鸡都会被感染;(2)过点O作OE⊥CD交CD于E,连接OC、OA.∵OA=5,OC=3,CD=4,∴CE=2.在Rt△OCE中,AE= ,∴AC=AE-CE= ,∵AC=BD,∴AC+BD=.答:这条公路在该免疫区内有()千米.【题型8 利用垂径定理求整点个数】【例8】如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是 ,⊙C上的整数点有 个.【答案】 3 12【分析】过C作直径UL∥x轴,连接AC,根据垂径定理求出AO=BO=4,根据勾股定理求出OC,再得出答案即可.【详解】解:过C作直径UL∥x轴,连接CA,则AC=×10=5,∵MN过圆心C,MN⊥AB,AB=8,∴AO=BO=4,∠AOC=90°,由勾股定理得:CO= =3,∴ON=5-3=2,OM=5+3=8,即A(-4,0),B(4,0),M(0,8),N(0,-2),同理还有弦QR=AB=8,弦WE=TS=6,且WE、TS、QR都平行于x轴,Q(-4,6),R(4,6),W(-3,7),E(3,7),T(-3,-1),S(3,-1),U(-5,3),L(5,3),即共12个点,故答案为:3;12.【点睛】本题考查了垂径定理、勾股定理和坐标与图形的性质,能找出符合条件的所有点是解此题的关键.【变式8-1】如图,已知的半径为10,的一条弦,若内的一点P恰好在上,则线段的长度为整数的值有( )A.2个 B.3个 C.4个 D.5个【答案】C【分析】本题考查了垂径定理,勾股定理,连接,过点O作于点,根据垂径定理求出,根据勾股定理求出,求出的范围,计算即可.【详解】解:如图,连接,过点O作于点,则,由勾股定理得:,则,∴线段的长度为整数的值有6、7、8、9共4个,故选:C.【变式8-2】如图,直径为的内有一点,且,则经过点的所有弦中长度为整数的有 条. 【答案】4【分析】过点的弦有无数条,求出最长的弦和最短的弦,再判断长度为整数的弦的条数即可.【详解】过点作直径,作弦, 则是过点的最长的弦,是过点的最短的弦,∴长度为整数的弦长还有9,∵过点且长度为9的弦有2条,∴经过点的所有弦中长度为整数的有4条.故答案是4.【点睛】本题主要考查了圆的基本性质,垂径定理,知道直径是圆中最长的弦,过点与圆垂直的弦是最短的弦是解题的关键.【变式8-3】如图,在平面直角坐标系中,以原点O为圆心的圆过点,直线与交于B、C两点,则弦的长为整数的有 条.【答案】4【分析】根据直线必过点,求出最短的弦是过点且与该圆直径垂直的弦,最长弦是圆的直径,得出弦的取值范围,再根据弦的长为整数,即可得出答案.【详解】解:当时,∴直线必过点,最短的弦是过点且与该圆直径垂直的弦,最长弦是是直径,当弦最短时,连接,,则,点的坐标是,,以原点为圆心的圆过点,圆的半径为13,,,,的长的最小值为24;当弦最长时,则,∴∵弦的长为整数∴或25或 26(其中是25的有两条),∴弦的长为整数的有4条,故答案为:4.【点睛】此题考查的是垂径定理,一次函数图象,用到的知识点是垂径定理、勾股定理、圆的有关性质,关键是求出最短、最长时的值.【题型9 垂径定理的实际应用】【例9】(24-25九年级上·安徽六安·阶段练习)如图,有一个底部呈球形的烧瓶,球的半径为5cm,瓶内液体已经过半,最大深度,则截面圆中弦的长为( )A.4cm B. C. D.【答案】C【分析】本题考查了垂径定理的应用和勾股定理的应用,熟练掌握垂径定理和勾股定理是解题的关键.由垂径定理得,再由勾股定理得,进而完成解答.【详解】解:连接,由题意得:,∴,∵,∴,在中,由勾股定理得:,∴.∴截面圆中弦的长为.故选:C.【变式9-1】我国古代著名数学著作《九章算术》总共收集了246个数学问题,这些问题的算法要比欧洲同类算法早1500年.其中有这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可以表述为:“如图,为的直径,弦于点E,寸,寸(注:1尺寸),则可得直径的长为 尺.”【答案】1【分析】本题主要考查了勾股定理和垂径定理,根据垂径定理得出的长,设半径为r寸,再利用勾股定理建立方程求解即可.【详解】解:如图所示,连接,,由垂径定理知,点E是的中点,寸,设半径为r寸,则寸在中,由勾股定理得,,∴,解得:, ,即圆的直径为寸,即为1尺.故答案为:1.【变式9-2】(24-25九年级上·浙江绍兴·期末)如图①是小聪帮妈妈做的一个锅盖架,图②是它的截面图,垂直放置的锅盖与架子左右两竖杆的交点为, ,锅盖直径为,则锅盖最低点到的距离是 cm.【答案】【分析】本题考查了垂径定理,勾股定理,添加辅助线构造直角三角形是解题的关键.设圆的圆心为,连接,交于点,根据垂径定理得到,根据勾股定理求出,即可得到答案.【详解】解:如图,设圆的圆心为,连接,交于点,根据题意得,,,,,,锅盖最低点到的距离是 ,故答案为:.【变式9-3】(24-25九年级上·浙江嘉兴·期末)沈括在《梦溪笔谈》中收录了计算圆弧长度的“会圆术”,主要思路是局部以直代曲,进行近似计算.如图,是以为圆心、为半径的圆弧,是弦的中点,是的中点,则长度的近似值.若,,则( )A. B. C. D.【答案】A【分析】连接,由是弦的中点,根据垂径定理得到,;由是的中点,根据垂径定理得到;根据经过直线外一点有且只有一条直线与已知直线垂直,得到点O,C,D三点共线,设,则,后根据勾股定理得到,求得的大小,代入公式计算即可.本题考查了垂径定理及其推论,勾股定理,熟练掌握两个定理是解题的关键.【详解】解:连接,∵点是弦的中点,∴,;∵是的中点,∴;根据经过直线外一点有且只有一条直线与已知直线垂直,得到点O,C,D三点共线,设,则,∴,解得;∴,∴,故选:A.【题型10 利用垂径定理求最值】【例10】如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP=1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作平行四边形PCED,当C,D点在圆周上运动时,线段PE长的最小值是 .【答案】4【分析】连接OC,设CD与PE交于点K,连接OK,根据平行四边形的性质结合垂径定理求出OK的长,在三角形PKO中,根据三角形的三边关系得到线段PK的取值范围,再由,得到结果.【详解】解:如图,连接OC,设CD与PE交于点K,连接OK,∵四边形PCED是平行四边形,∴,,∴根据垂径定理在中,,,∴,∵,∴,即,∵,∴,∴线段PE的最小值是4.故答案是:4.【点睛】本题考查线段最值问题,解题的关键是掌握平行四边形的性质和圆的垂径定理,再利用三角形三边的数量关系求出线段的取值范围从而得到最小值.【变式10-1】如图,在⊙O中,AD为直径,弦BC⊥AD于点H,连接OB,已知OB=2cm,∠OBC=30°,动点E在直径AD上从D向A以1cm/s的速度做匀速运动,运动时间为ts,当∠OBE=30°时,t的值为 .【答案】1或4/4或1【分析】分两种情况讨论,由直角三角形的性质可求解.【详解】解:如图,当点与点重合时,,,,,,,如图,当点和点重合时,连接,,,,,,综上所述:或4,故答案为:1或4.【点睛】本题考查了垂径定理,含角的直角三角形的性质,解题的关键是利用分类讨论思想解决问题.【变式10-2】如图,在中,直径,弦,点是的中点,过点作于点,若点、在上运动(点、与点、不重合),则的最大值是( )A. B.4 C. D.6【答案】B【分析】延长CF交于T,连接DT,利用三角形的中位线定理证明,当DT是直径时,EF的值最大.【详解】如图所示,延长CF交于T,连接DT,∵AB是直径,AB⊥CT,∴CF=FT,∵DE=EC,∴,当DT是直径时,EF的值最大,此时,EF最大值为,故选:B.【点睛】本题考查了垂径定理,三角形的中位线定理等,根据中点构造中位线进行转换是解题关键.【变式10-3】(24-25九年级下·安徽池州·开学考试)如图,在平面直角坐标系中,以点为圆心,半径为的圆与轴交于两点,与轴交于两点,点为上一动点,于点,则点在上运动过程中,线段的长的最小值为( )A. B. C. D.【答案】B【分析】本题考查了垂径定理,含角直角三角形,勾股定理,正确添加辅助线是解题的关键.连接,作,连接,由可知,点在以为直径的圆上移动,当点在的延长线上时,的长最小,根据含角直角三角形及勾股定理求出,,即可得到答案.【详解】如图,连接,过点作于点,连接.,.在中,,,,,,,.,.,,,.,,点在以为直径的上运动,.当点在的延长线上时,的长最小,最小值为.故选:B.21世纪教育网(www.21cnjy.com)21世纪教育网(www.21cnjy.com)21世纪教育网(www.21cnjy.com)专题24.2 垂直于弦的直径(举一反三讲义)【人教版】【题型1 利用垂径定理判断正误】 2【题型2 利用垂径定理求角度】 3【题型3 利用垂径定理求线段长度】 4【题型4 利用垂径定理求面积】 5【题型5 利用垂径定理求坐标】 6【题型6 利用垂径定理求平行弦问题】 7【题型7 利用垂径定理求同心圆问题】 8【题型8 利用垂径定理求整点个数】 9【题型9 垂径定理的实际应用】 10【题型10 利用垂径定求最值】 11知识点 垂直于弦的直径1. 圆的对称性圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴.2. 垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧.3. 垂径定理的推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.由垂径定理以及推论可知,如果一条直线具备①经过圆心(直径);②垂直于弦;③平分弦(非直径);④平分弦所对的优弧;⑤平分弦所对的劣弧中任意两条性质,就具备其他三条性质,简称“知二推三”.【题型1 利用垂径定理判断正误】【例1】如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是( )A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°【变式1-1】(24-25九年级上·浙江温州·期中)下列命题正确的是( )A.平分弦所对的两条弧的直线必垂直于弦B.垂直于弦的直线平分弦C.平分弦的直线必平分弦所对的两条弧D.平分弦的直径必平分弦所对的两条弧【变式1-2】(2025·河南新乡·三模)如图,、在上,连接,,.的平分线交于点,交于点,连接.下列结论错误的是( )A. B. C. D.【变式1-3】如图,AB为半圆O的直径,AC,AD都是弦,且AC平分∠BAD,则下列各式正确的是( )A.AB+AD=2AC B.AB+AD<2ACC.AC=AB AD D.AC<AB AD【题型2 利用垂径定理求角度】【例2】已知⊙O的半径为2,弦长分别为和,则的度数为( )A. B. C.或 D.或【变式2-1】如图,是的直径,是的弦,且,,则的度数为( ) A. B. C. D.【变式2-2】(24-25九年级下·湖南娄底·期中)如图,是的弦,半径,,则的度数为( ) A. B. C. D.【变式2-3】如图,已知的两弦相交于,且点为的中点,若,则的度数为 .【题型3 利用垂径定理求线段长度】【例3】(24-25九年级上·陕西西安·阶段练习)如图,经过点,交y轴于点A,若,弦长为( )A.8 B.10 C.16 D.20【变式3-1】(24-25九年级上·贵州遵义·期中)如图,在中,于点,,,则最长的弦长是( )A. B. C. D.【变式3-2】(2025·湖南长沙·三模)如图,、、是上的点,,垂足为点,,若,则的长为( )A. B.3 C. D.4【变式3-3】(24-25九年级下·湖北武汉·阶段练习)如图,已知点A,C,D在上,点B在内,和均为直角,,,,则的半径为( ) A.5 B. C. D.【题型4 利用垂径定理求面积】【例4】如图,在半径为1的中有三条弦,它们所对的圆心角分别为,,,那么以这三条弦长为边长的三角形的面积是 . 【变式4-1】(24-25九年级上·陕西渭南·期中)如图,是的直径,弦于点,连接,若,,则的面积是( )A. B. C. D.【变式4-2】(2025·湖北·二模)如图,已知矩形的顶点B,C在半径为5的半圆O上,顶点A,D在直径上.若,则矩形的面积等于( )A.21 B.22 C.23 D.24【变式4-3】已知的三个顶点都在圆O上,点O到的距离为3,且,则的面积= .【题型5 利用垂径定理求坐标】【例5】(2025·江西南昌·一模)如图,点,,半径为的经过点,,则点的坐标为( )A. B. C. D.【变式5-1】(24-25九年级上·全国·期末)如图,在平面直角坐标系中,半径为的经过点,,则点的坐标为 .【变式5-2】(24-25九年级上·辽宁葫芦岛·期中)在平面直角坐标系中,的圆心坐标是,半径为,函数的图象被截得的弦的长为,则的值是 .【变式5-3】(24-25九年级上·山东淄博·期末)如图,在平面直角坐标系中,正方形的顶点,分别在轴,轴上,以为弦的与轴相切,若点的坐标为,则圆心的坐标为( )A. B. C. D.【题型6 利用垂径定理求平行弦问题】【例6】在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了( )cmA.1 B.3 C.3或4 D.1或7【变式6-1】如图,矩形ABCD与圆心在AB上的☉O交于点G,B,F,E, GB =5,EF =4,那么AD =_____.【变式6-2】(24-25九年级上·黑龙江牡丹江·期末)已知的半径为,弦平行于弦和之间的距离是 .【变式6-3】(24-25九年级上·河北秦皇岛·期中)如图,的半径为3,弦的直角顶点B在弦上运动(可与点M,N重合),点A,C始终在上,且.关于嘉嘉和淇淇的说法判断正确的是( )嘉嘉说:“当点B与点M,点N重合时,的度数是.”淇淇说:“连接,当与弦平行时,点B到的距离为2.”A.嘉嘉正确,淇淇错误 B.嘉嘉错误,淇淇正确C.嘉嘉正确,淇淇也正确 D.嘉嘉错误,淇淇也错误【题型7 利用垂径定理求同心圆问题】【例7】 如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧.已知每个台阶宽度为32cm(即相邻两弧半径相差32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为 cm【变式7-1】如图,两个圆都以点O为圆心.求证:.【变式7-2】如图,两个同心圆的半径分别为2和4,矩形的边和分别是两圆的弦,则矩形面积的最大值是 .【变式7-3】高致病性禽流感是比SARS病毒传染速度更快的传染病.(1)某养殖场有8万只鸡,假设有1只鸡得了禽流感,如果不采取任何防治措施,那么,到第二天将新增病鸡10只,到第三天又将新增病鸡100只,以后每天新增病鸡数依次类推,请问:到第四天,共有多少只鸡得了禽流感病?到第几天,该养殖场所有鸡都会被感染?(2)为防止禽流感蔓延,政府规定:离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有的禽类强制免疫;同时,对扑杀区和免疫区内的村庄、道路实行全封闭管理.现有一条笔直的公路AB通过禽流感病区,如图,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在该免疫区内有多少千米【题型8 利用垂径定理求整点个数】【例8】如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是 ,⊙C上的整数点有 个.【变式8-1】如图,已知的半径为10,的一条弦,若内的一点P恰好在上,则线段的长度为整数的值有( )A.2个 B.3个 C.4个 D.5个【变式8-2】如图,直径为的内有一点,且,则经过点的所有弦中长度为整数的有 条. 【变式8-3】如图,在平面直角坐标系中,以原点O为圆心的圆过点,直线与交于B、C两点,则弦的长为整数的有 条.【题型9 垂径定理的实际应用】【例9】(24-25九年级上·安徽六安·阶段练习)如图,有一个底部呈球形的烧瓶,球的半径为5cm,瓶内液体已经过半,最大深度,则截面圆中弦的长为( )A.4cm B. C. D.【变式9-1】我国古代著名数学著作《九章算术》总共收集了246个数学问题,这些问题的算法要比欧洲同类算法早1500年.其中有这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可以表述为:“如图,为的直径,弦于点E,寸,寸(注:1尺寸),则可得直径的长为 尺.”【变式9-2】(24-25九年级上·浙江绍兴·期末)如图①是小聪帮妈妈做的一个锅盖架,图②是它的截面图,垂直放置的锅盖与架子左右两竖杆的交点为, ,锅盖直径为,则锅盖最低点到的距离是 cm.【变式9-3】(24-25九年级上·浙江嘉兴·期末)沈括在《梦溪笔谈》中收录了计算圆弧长度的“会圆术”,主要思路是局部以直代曲,进行近似计算.如图,是以为圆心、为半径的圆弧,是弦的中点,是的中点,则长度的近似值.若,,则( )A. B. C. D.【题型10 利用垂径定理求最值】【例10】如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP=1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作平行四边形PCED,当C,D点在圆周上运动时,线段PE长的最小值是 .【变式10-1】如图,在⊙O中,AD为直径,弦BC⊥AD于点H,连接OB,已知OB=2cm,∠OBC=30°,动点E在直径AD上从D向A以1cm/s的速度做匀速运动,运动时间为ts,当∠OBE=30°时,t的值为 .【变式10-2】如图,在中,直径,弦,点是的中点,过点作于点,若点、在上运动(点、与点、不重合),则的最大值是( )A. B.4 C. D.6【变式10-3】(24-25九年级下·安徽池州·开学考试)如图,在平面直角坐标系中,以点为圆心,半径为的圆与轴交于两点,与轴交于两点,点为上一动点,于点,则点在上运动过程中,线段的长的最小值为( )A. B. C. D.21世纪教育网(www.21cnjy.com)21世纪教育网(www.21cnjy.com)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 人教版2026年九年级上册数学举一反三专题24.2垂直于弦的直径(举一反三讲义)(原卷版).docx 人教版2026年九年级上册数学举一反三专题24.2垂直于弦的直径(举一反三讲义)(解析版).docx