人教版2026学年八年级数学上册压轴题专项训练专题05全等三角形之一线三等角模型与手拉手模型的二类综合题型(原卷版+解析)

资源下载
  1. 二一教育资源

人教版2026学年八年级数学上册压轴题专项训练专题05全等三角形之一线三等角模型与手拉手模型的二类综合题型(原卷版+解析)

资源简介

专题04 全等三角形之一线三等角模型与手拉手模型的二类综合题型
目录
典例详解
类型一、全等三角形模型之一线三等角模型
类型二、全等三角形模型之手拉手模型
压轴专练
类型一、全等三角形模型之一线三等角模型
【常见模型及证法】 1)一线三等角(K型图)模型(同侧型) 锐角一线三等角 直角一线三等角(“K型图”) 钝角一线三等角 条件:,AE=DE; 结论:,AB+CD=BC。 2)一线三等角(K型图)模型(异侧型) 锐角一线三等角 直角一线三等角 钝角一线三等角 条件:,AE=DE; 结论:,AB-CD=BC。 1)(同侧型)证明:∵∠AEC=∠B+∠BAE,∠B=∠AED,∴∠AEC=∠AED+∠BAE, ∵∠AEC=∠AED+∠CED,∴∠BAE=∠CED。 在△ABE和△ECD中,∠B=∠C,∠BAE=∠CED,AE=ED;∴, ∴,,∵BC=BE+EC,∴AB+CD=BC。 2)(异侧型)证明:∵,∴∠ECD=∠ABE, ∵,∠AED=∠AEB+∠CED,, ∴∠AEB+∠A=∠AEB+∠CED,∴∠A=∠CED, 在△ABE和△ECD中,∠A=∠CED,∠ECD=∠ABE,AE=ED;∴, ∴,,∵BC=EC-BE,∴AB-CD=BC。
例1.(1)如图1,已知中,90°,,直线经过点直线,直线,垂足分别为点.求证:.
(2)如图2,将(1)中的条件改为:在中,三点都在直线上,并且有.请写出三条线段的数量关系,并说明理由.
【变式1-1】在△ABC中,∠BAC=90°,AC=AB,直线MN经过点A,且CD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点A旋转到图1的位置时, 度;
(2)求证:DE=CD+BE;
(3)当直线MN绕点A旋转到图2的位置时,试问DE、CD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
【变式1-2】通过对下面数学模型的研究学习,解决下列问题:
(1)如图1,,,过点B作于点C,过点D作于点E.由,得.又,可以推理得到_________,推理依据是___________.进而得到_________,_________.我们把这个数学模型称为“K字”模型或“一线三等角”模型;
(2)如图2,,,,连接,,且于点F,与直线交于点G.求证:点G是的中点;
(3)如图3,已知四边形和为正方形,的面积为,的面积为,试猜想和的数量关系,并说明理由.
类型二、全等三角形模型之手拉手模型
1)双等边三角形型 条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。 结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。 证明: ∵△ABC和△DCE均为等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60° ∴∠BCA+∠ACE=∠ECD+∠ACE,即:∠BCE=∠ACD,∴△ACD≌△BCE(SAS), ∴BE=AD,∠CBE=∠CAD,又∵∠CMB=∠AMF,∴∠AFM=∠BCM=60°, 过点C作CP⊥AD,CQ⊥BE,则∠CQB=∠CPA=90°,又∵∠CBE=∠CAD,BC=AC,∴△BCQ≌△ACP(AAS) ∴CQ=CP,根据角平分线的判定可得:CF平分∠BFD。 2)双等腰直角三角形型 条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。 结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。 证明: ∵△ABC和△DCE均为等腰直角三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=90° ∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∴△ACD≌△BCE(SAS), ∴BE=AD,∠CBE=∠CAD,又∵∠CMB=∠AMN,∴∠ANM=∠BCM=90°, 过点C作CP⊥AD,CQ⊥BE,则∠CQB=∠CPA=90°,又∵∠CBE=∠CAD,BC=AC,∴△BCQ≌△ACP(AAS) ∴CQ=CP,根据角平分线的判定可得:CN平分∠BND。 3)双等腰三角形型 条件:BC=AC,CE=CD,∠BCA=∠ECD,C为公共点;连接BE,AD交于点F。 结论:①△ACD≌△BCE;②BE=AD;③∠BCM=∠AFM;④CF平分∠BFD。 证明: ∵∠BCA=∠ECD,∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD, 又∵BC=AC,CE=CD,∴△ACD≌△BCE(SAS),∴BE=AD,∠CBE=∠CAD, 又∵∠CMB=∠AMF,∴∠BCM=∠AFM,过点C作CP⊥AD,CQ⊥BE,则∠CQB=∠CPA=90°, 又∵∠CBE=∠CAD,BC=AC,∴△BCQ≌△ACP(AAS) ∴CQ=CP,根据角平分线的判定可得:CF平分∠BFD。
例2.问题发现:如图1,已知为线段上一点,分别以线段,为直角边作等腰直角三角形,,,,连接,,线段,之间的数量关系为______;位置关系为_______.
拓展探究:如图2,把绕点逆时针旋转,线段,交于点,则与之间的关系是否仍然成立?请说明理由.
【变式2-1】如图,在中,,在中,,连接.试说明:.
【变式2-2】在中,,点D是直线上一点(不与B、C重合),E是外一点,连接,已知,,连接
(1)如图1,点D在线段上,如果,则______度:
(2)如图2,当点D在线段上,试判断与之间的数量关系,并说明理由;
(3)当点D在线段的延长线上时,(2)中的结论是否成立?若不成立,请写出新的结论并说明理由.
【变式2-3】在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.
(1)操作发现
如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为   ;线段BD、AB、EB的数量关系为   ;
(2)猜想论证
当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;
(3)拓展延伸
若AB=5,BD=7,请你直接写出△ADE的面积.

一、单选题
1.如图,,点E在上,,则的度数为( )
A. B. C. D.
2.如图中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若点E、B、D到直线AC的距离分别为6、3、2,则图中实线所围成的阴影部分面积S是( )

A.50 B.44 C.38 D.32
二、填空题
3.如图,在中,,过点作,且,连接,若,则的长为 .
4.如图,A,C,B三点在同一条直线上,和都是等边三角形,,分别与,交于点,,有如下结论:①;②;③;④其中正确结论的是(填序号) .
三、解答题
5.通过对下面数学模型的研究学习,解决下列问题:
(1)如图1,点A在直线l上,,过点B作于点C,过点D作交于点E.得.又,可以推理得到.进而得到结论:_____,_____.我们把这个数学模型称为“K字”模型或“一线三直角”模型;
(2)如图2,∠于点C,于点E,与直线交于点,求证:.
6.(1)如图1,已知,,易得.如图2,,,,且,,试问的数量关系,并写出其证明过程.
(2)如图3,在中,,,点D是直线上的任意一点(不与点B、C重合),连接,过点D在的右侧作,且,连接,直接写出的度数.
7.【问题发现】(1)如图1,和均为等边三角形,点在同一条直线上,连接,容易发现:线段,之间的数量关系为 ;②的度数为 .
【探究发现】(2)如图2,和均为等腰直角三角形,,点在同一条直线上,连接.试探究线段,,之间的数量关系及的度数,并说明理由.
【问题解决】(3)如图3,,,,,请直接写出的值.
8.如图①,在中,,,过点C在外作直线l,于点M,于点N.
(1)试说明:;
(2)如图②,将(1)中条件改为(),,请问(1)中的结论是否还成立?请说明理由.
(3)如图③,在中,点D为上一点,,,,,请直接写出的长.
9.综合与实践
(1)操作判断
飞跃组在学习了三角形全等后展开了探究性学习活动. 如图1,在中,,,直线l经过点A,直线l,直线l,垂足分别为D,E.由此得到结论:,,之间的数量关系是 .
(2)开放探究
无敌组的同学们提出了如下的问题:如果三个角不是直角,那么结论是否会成立呢?如图2,将(1)中的条件改为在中,,D,A,E三点都在直线l上,并且有,其中为任意锐角或钝角.(1)中的结论是否成立?若成立,请给出证明;若不成立,请给出合理的解释.
(3)拓展应用
如图3,过的边、向外作正方形和正方形,是边上的高,延长交于点,求证:.
10.综合与实践:
【问题情境】
(1)八上课本中有这样一道习题:如图1,和都是等边三角形,连接,.同学们发现以下结论:与的数量关系是______;
【变式思考】
(2)如图2,和都是等腰直角三角形,.若,,则四边形面积的最大值是______;
【拓展运用】
(3)如图3,在等腰直角三角形中,,是边上一点,连接,以为边向上作等腰直角三角形且,连接,用等式表示线段,,之间的数量关系,并证明.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)专题04 全等三角形之一线三等角模型与手拉手模型的二类综合题型
目录
典例详解
类型一、全等三角形模型之一线三等角模型
类型二、全等三角形模型之手拉手模型
压轴专练
类型一、全等三角形模型之一线三等角模型
【常见模型及证法】 1)一线三等角(K型图)模型(同侧型) 锐角一线三等角 直角一线三等角(“K型图”) 钝角一线三等角 条件:,AE=DE; 结论:,AB+CD=BC。 2)一线三等角(K型图)模型(异侧型) 锐角一线三等角 直角一线三等角 钝角一线三等角 条件:,AE=DE; 结论:,AB-CD=BC。 1)(同侧型)证明:∵∠AEC=∠B+∠BAE,∠B=∠AED,∴∠AEC=∠AED+∠BAE, ∵∠AEC=∠AED+∠CED,∴∠BAE=∠CED。 在△ABE和△ECD中,∠B=∠C,∠BAE=∠CED,AE=ED;∴, ∴,,∵BC=BE+EC,∴AB+CD=BC。 2)(异侧型)证明:∵,∴∠ECD=∠ABE, ∵,∠AED=∠AEB+∠CED,, ∴∠AEB+∠A=∠AEB+∠CED,∴∠A=∠CED, 在△ABE和△ECD中,∠A=∠CED,∠ECD=∠ABE,AE=ED;∴, ∴,,∵BC=EC-BE,∴AB-CD=BC。
例1.(1)如图1,已知中,90°,,直线经过点直线,直线,垂足分别为点.求证:.
(2)如图2,将(1)中的条件改为:在中,三点都在直线上,并且有.请写出三条线段的数量关系,并说明理由.
【答案】(1)证明见解析;(2),证明见解析
【知识点】垂线模型(全等三角形的辅助线问题)、证一条线段等于两条线段和差(全等三角形的辅助线问题)
【分析】(1)利用已知得出∠CAE=∠ABD,进而利用AAS得出则△ABD≌△CAE,即可得出DE=BD+CE;
(2)根据∠BDA=∠AEC=∠BAC,得出∠CAE=∠ABD,在△ADB和△CEA中,根据AAS证出△ADB≌△CEA,从而得出AE=BD,AD=CE,即可证出DE=BD+CE;
【详解】(1)DE=BD+CE.理由如下:
∵BD⊥,CE⊥,
∴∠BDA=∠AEC=90°
又∵∠BAC=90°,
∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,
∴∠CAE=∠ABD
在△ABD和△CAE中,

∴△ABD≌△CAE(AAS)
∴BD=AE,AD=CE,
∵DE=AD+AE,
∴DE=CE+BD;
(2),理由如下:
∵∠BDA=∠AEC=∠BAC,
∴∠DBA+∠BAD=∠BAD+∠CAE,
∴∠CAE=∠ABD,
在△ADB和△CEA中,

∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴BD+CE=AE+AD=DE;
【点睛】本题考查了全等三角形的判定与性质综合中的“一线三等角”模型:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.
【变式1-1】在△ABC中,∠BAC=90°,AC=AB,直线MN经过点A,且CD⊥MN于D,BE⊥MN于E.
(1)当直线MN绕点A旋转到图1的位置时, 度;
(2)求证:DE=CD+BE;
(3)当直线MN绕点A旋转到图2的位置时,试问DE、CD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
【答案】(1)90°
(2)见解析
(3)CD= BE + DE,证明见解析
【分析】(1)由∠BAC=90°可直接得到90°;
(2)由CD⊥MN,BE⊥MN,得∠ADC=∠BEA=∠BAC=90°,根据等角的余角相等得到∠DCA=∠EAB,根据AAS可证△DCA≌△EAB,所以AD=CE,DC=BE,即可得到DE = EA+AD = DC+BE.
(3)同(2)易证△DCA≌△EAB,得到AD=CE,DC=BE,由图可知AE = AD +DE,所以 CD= BE + DE.
【详解】(1)∵∠BAC=90°
∴ ∠EAB+∠DAC=180°-∠BAC=180°-90°=90°
故答案为:90°.
(2)证明:∵ CD⊥MN于D,BE⊥MN于E
∴ ∠ADC=∠BEA=∠BAC=90°
∵ ∠DAC+∠DCA=90°且 ∠DAC+∠EAB=90°
∴ ∠DCA=∠EAB
∵在△DCA和△EAB中
∴△DCA≌△EAB (AAS)
∴ AD=BE且EA=DC
由图可知:DE = EA+AD = DC+BE.
(3)∵ CD⊥MN于D,BE⊥MN于E
∴ ∠ADC=∠BEA=∠BAC=90°
∵ ∠DAC+∠DCA=90°且∠DAC+∠EAB=90°
∴ ∠DCA=∠EAB
∵在△DCA和△EAB中
∴△DCA≌△EAB (AAS)
∴ AD=BE且AE=CD
由图可知:AE = AD +DE
∴ CD= BE + DE.
【点睛】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角,也考查了三角形全等的判定与性质.
【变式1-2】通过对下面数学模型的研究学习,解决下列问题:
(1)如图1,,,过点B作于点C,过点D作于点E.由,得.又,可以推理得到_________,推理依据是___________.进而得到_________,_________.我们把这个数学模型称为“K字”模型或“一线三等角”模型;
(2)如图2,,,,连接,,且于点F,与直线交于点G.求证:点G是的中点;
(3)如图3,已知四边形和为正方形,的面积为,的面积为,试猜想和的数量关系,并说明理由.
【答案】(1),,,
(2)见解析
(3),理由见解析
【知识点】全等的性质和ASA(AAS)综合(ASA或者AAS)
【分析】本题主要考查了全等三角形的判定与性质,理解“一线三等角”的全等模型以及该模型的构成条件、证明过程及结论是解题关键.
(1)通过证明,再根据全等三角形的判定与性质逐步分析即可解答;
(2)作,利用“K字模型”的结论可得,故可推出,再证即可证明结论;
(3)作,利用“K字模型”的结论可得,进一步可证即可求解.
【详解】(1)解:∵过点B作于点C,过点D作于点E.
∴,
∵,,
∴,
∴.
故答案为:,,,.
(2)证明:如图:作,
由“K字模型”可得:
∴,

∵,
∴,
∴,即:点G是的中点.
(3)解:,理由如下:
如图:作,
∵四边形和为正方形,
∴,
由“K字模型”可得:,
,,



∴∴.
类型二、全等三角形模型之手拉手模型
1)双等边三角形型 条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。 结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。 证明: ∵△ABC和△DCE均为等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60° ∴∠BCA+∠ACE=∠ECD+∠ACE,即:∠BCE=∠ACD,∴△ACD≌△BCE(SAS), ∴BE=AD,∠CBE=∠CAD,又∵∠CMB=∠AMF,∴∠AFM=∠BCM=60°, 过点C作CP⊥AD,CQ⊥BE,则∠CQB=∠CPA=90°,又∵∠CBE=∠CAD,BC=AC,∴△BCQ≌△ACP(AAS) ∴CQ=CP,根据角平分线的判定可得:CF平分∠BFD。 2)双等腰直角三角形型 条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。 结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。 证明: ∵△ABC和△DCE均为等腰直角三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=90° ∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∴△ACD≌△BCE(SAS), ∴BE=AD,∠CBE=∠CAD,又∵∠CMB=∠AMN,∴∠ANM=∠BCM=90°, 过点C作CP⊥AD,CQ⊥BE,则∠CQB=∠CPA=90°,又∵∠CBE=∠CAD,BC=AC,∴△BCQ≌△ACP(AAS) ∴CQ=CP,根据角平分线的判定可得:CN平分∠BND。 3)双等腰三角形型 条件:BC=AC,CE=CD,∠BCA=∠ECD,C为公共点;连接BE,AD交于点F。 结论:①△ACD≌△BCE;②BE=AD;③∠BCM=∠AFM;④CF平分∠BFD。 证明: ∵∠BCA=∠ECD,∴∠BCA+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD, 又∵BC=AC,CE=CD,∴△ACD≌△BCE(SAS),∴BE=AD,∠CBE=∠CAD, 又∵∠CMB=∠AMF,∴∠BCM=∠AFM,过点C作CP⊥AD,CQ⊥BE,则∠CQB=∠CPA=90°, 又∵∠CBE=∠CAD,BC=AC,∴△BCQ≌△ACP(AAS) ∴CQ=CP,根据角平分线的判定可得:CF平分∠BFD。
例2.问题发现:如图1,已知为线段上一点,分别以线段,为直角边作等腰直角三角形,,,,连接,,线段,之间的数量关系为______;位置关系为_______.
拓展探究:如图2,把绕点逆时针旋转,线段,交于点,则与之间的关系是否仍然成立?请说明理由.
【答案】问题发现:,;拓展探究:成立,理由见解析
【分析】问题发现:根据题目条件证△ACE≌△DCB,再根据全等三角形的性质即可得出答案;
拓展探究:用SAS证,根据全等三角形的性质即可证得.
【详解】解:问题发现:延长BD,交AE于点F,如图所示:
∵,
∴,
又∵,
∴(SAS),

∵,
∴,
∴,
∴,

故答案为:,;
拓展探究:成立.
理由如下:设与相交于点,如图1所示:
∵,
∴,
又∵,,
∴(SAS),
∴,,
∵,
∴,
∴,
∴,
即,依然成立.
【点睛】本题考查全等三角形的判定和性质,三角形三边关系,手拉手模型,熟练掌握全等三角形的判定和手拉手模型是解决本题的关键.
【变式2-1】如图,在中,,在中,,连接.试说明:.
【答案】见解析
【知识点】同(等)角的余(补)角相等的应用、用SAS证明三角形全等(SAS)
【分析】本题主要考查了全等三角形的判定和性质,解题的关键是熟练掌握三角形全等的判定方法,,,,,.先根据余角的性质得出,再根据“”证明三角形全等即可.
【详解】解:因为,
所以,
所以,
所以,
在与中,
所以.
【变式2-2】在中,,点D是直线上一点(不与B、C重合),E是外一点,连接,已知,,连接
(1)如图1,点D在线段上,如果,则______度:
(2)如图2,当点D在线段上,试判断与之间的数量关系,并说明理由;
(3)当点D在线段的延长线上时,(2)中的结论是否成立?若不成立,请写出新的结论并说明理由.
【答案】(1)
(2),理由见解析
(3)(2)中的结论不成立,当点在的延长线上时,.理由见解析
【分析】本题考查了全等三角形的常见模型-旋转模型,掌握该模型的相关结论是解题关键.
(1)证即可求解;
(2)证即可求解;
(3)证即可求解.
【详解】(1)解:∵,
∴,
即:,
∵,,

∵,,
故答案为:
(2)解:,理由如下:


又,

即:,
在和中,,

(3)解:(2)中的结论不成立,当点在的延长线上时,.理由如下:
如图所示:


即:,
在和中,,
又,

【变式2-3】在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.
(1)操作发现
如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为   ;线段BD、AB、EB的数量关系为   ;
(2)猜想论证
当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;
(3)拓展延伸
若AB=5,BD=7,请你直接写出△ADE的面积.

【答案】(1)AB⊥BE,AB=BD+BE;(2)图2中BE=AB+BD,图3中,BD=AB+BE,证明见解析;(3)72或2
【分析】(1)首先通过SAS证明△ACD≌△BCE,然后利用全等三角形的性质和等量代换即可得出答案;
(2)仿照(1)中证明△ACD≌△BCE,然后利用全等三角形的性质即可得出结论;
(3)首先求出BE的长度,然后利用S△AED AD EB即可求解.
【详解】解:(1)如图1中,

∵∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,
∵CA=CB,CD=CE,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠CBE=∠A,
∵CA=CB,∠ACB=90°,
∴∠A=∠CBA=45°,
∴∠CBE=∠A=45°,
∴ABE=90°,
∴AB⊥BE,
∵AB=AD+BD,AD=BE,
∴AB=BD+BE,
故答案为AB⊥BE,AB=BD+BE.
(2)①如图2中,结论:BE=AB+BD.

理由:∵∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,
∵CA=CB,CD=CE,
∴△ACD≌△BCE(SAS),
∴AD=BE,
∵AD=AB+BD,AD=BE,
∴BE=AB+BD.
②如图3中,结论:BD=AB+BE.

理由:∵∠ACB=∠DCE=90°,
∴∠ACD=∠BCE,
∵CA=CB,CD=CE,
∴△ACD≌△BCE(SAS)
∴AD=BE,
∵BD=AB+AD,AD=BE,
∴BD=AB+BE.
(3)如图2中,∵AB=5,BD=7,
∴BE=AD=5+7=12,
∵BE⊥AD,
∴S△AED AD EB12×12=72.
如图3中,∵AB=5,BD=7,
∴BE=AD=BD﹣AB=7﹣5=2,
∵BE⊥AD,
∴S△AED AD EB2×2=2.
【点睛】本题主要考查全等三角形,掌握全等三角形的判定及性质并分情况讨论是关键.
一、单选题
1.如图,,点E在上,,则的度数为( )
A. B. C. D.
【答案】C
【分析】本题主要考查了全等三角形的性质与判定,三角形内角和定理,等边对等角,先证明,再利用可证明得到,利用三角形内角和定理可证明,据此根据等边对等角和三角形内角和定理可求出答案.
【详解】解:∵,
∴,即,
在和中,

∴,
∴;
如图所示,设交于O,
∵,,

∴,
∵,,
∴,
故选:C.
2.如图中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若点E、B、D到直线AC的距离分别为6、3、2,则图中实线所围成的阴影部分面积S是( )

A.50 B.44 C.38 D.32
【答案】D
【分析】由已知和图形根据“K”字形全等,用AAS可证△FEA≌△MAB,△DHC≌△CMB,推出AM=EF=6,AF=BM=3, CM=DH=2,BM=CH=3,从而得出FH=14,根据阴影部分的面积=S梯形EFHD-S△EFA-S△ABC-S△DHC和面积公式代入求出即可.
【详解】∵AE⊥AB,EF⊥AF,BM⊥AM,

∴∠F=∠AMB=∠EAB=90°,
∴∠FEA+∠EAF=90°,∠EAF+∠BAM=90°,
∴∠FEA=∠BAM,
在△FEA和△MAB中

∴△FEA≌△MAB(AAS),
∴AM=EF=6,AF=BM=3,
同理CM=DH=2,BM=CH=3,
∴FH=3+6+2+3=14,
∴梯形EFHD的面积===56,
∴阴影部分的面积=S梯形EFHD-S△EFA-S△ABC-S△DHC
=
=32.
故选D.
【点睛】本题考查了三角形的面积,梯形的面积,全等三角形的性质和判定等知识点,关键是把不规则图形的面积转化成规则图形的面积.
二、填空题
3.如图,在中,,过点作,且,连接,若,则的长为 .
【答案】3
【分析】过点作交延长线于点,先证明,则,然后根据求即可.
【详解】解:过点作交延长线于点,
则∠DMC=90°=∠ABC,
,,
,,






故填.
【点睛】本题主要考查了全等三角形的判定与性质以及三角形的面积,正确作出辅助线、构造全等三角形证得成为解答本题的关键.
4.如图,A,C,B三点在同一条直线上,和都是等边三角形,,分别与,交于点,,有如下结论:①;②;③;④其中正确结论的是(填序号) .
【答案】①②④
【分析】本题主要考查了等边三角形的性质、全等三角形的判定和性质;灵活运用相关判定定理和性质定理是解题的关键.
根据等边三角形的性质可得、,,再说明,即可证明,即可判断①;然后可得,再分别表示出和,即可判定②正确;求出,证明可判定③;由可得,然后结合可得,可判定④.
【详解】解:∵和均为等边三角形,
∴,
∴,即,
∴,故①正确;
∴,
∵,,
∴,故②正确;
∵,
∴,
∴,
又∵,
∴,
∴,
∵,
∴即③错误;
∵,
∴,
∴,即,则④正确.
综上,正确结论的是①②④.
故答案为:①②④.
三、解答题
5.通过对下面数学模型的研究学习,解决下列问题:
(1)如图1,点A在直线l上,,过点B作于点C,过点D作交于点E.得.又,可以推理得到.进而得到结论:_____,_____.我们把这个数学模型称为“K字”模型或“一线三直角”模型;
(2)如图2,∠于点C,于点E,与直线交于点,求证:.
【答案】(1),
(2)见解析
【分析】本题考查一线三直角全等问题,
(1)由,得,则,而,即可证明,得,,于是得到问题的答案;
(2)作于点,因为于点,于点,所以,由(1)得,因为,所以,则,而,即可证明,得,所以,再证明,则.
【详解】(1))解:于点,于点,
∴,
∵,
∴,
∴,
在和中,

∴,
∴,,
故答案为:,.
(2)证明:如图2,作于点,
∵于点,于点E,
∴,
由,
同理(1)得,
∴,
在和中,
∴,
∴.
6.(1)如图1,已知,,易得.如图2,,,,且,,试问的数量关系,并写出其证明过程.
(2)如图3,在中,,,点D是直线上的任意一点(不与点B、C重合),连接,过点D在的右侧作,且,连接,直接写出的度数.
【答案】(1),证明见解析;(2)或
【分析】(1)过点作于点,证明,,推出,,等量代换可得;
(2)分三种情况:点D在线段上,点在线段的延长线上,点在线段的延长线上,参照(1)中方法,通过作辅助线构造全等三角形,即可求解.
本题考查全等三角形的判定和性质,等腰三角形的性质,注意分情况讨论是解题的关键.
【详解】(1)解:.
证明:过点作于点,

,,

在和中,


同理可证,,
,,
.
(2)解:当点D在线段上时,过点E作,交的延长线于点F,
由(1)可知,
,,






当点在线段的延长线上时,过点作,交的延长线于点,
同理可得,
,,




,即;
当点在线段的延长线上时,过点作于点,
同理证得,
,,




.
综上可得的度数为或
7.【问题发现】(1)如图1,和均为等边三角形,点在同一条直线上,连接,容易发现:线段,之间的数量关系为 ;②的度数为 .
【探究发现】(2)如图2,和均为等腰直角三角形,,点在同一条直线上,连接.试探究线段,,之间的数量关系及的度数,并说明理由.
【问题解决】(3)如图3,,,,,请直接写出的值.
【答案】(1)①;②;(2),,见解析;(3)8
【分析】本题主要考查了全等三角形的判定与性质、勾股定理、等腰直角三角形的性质,解决本题的关键是根据全等三角形的性质找边和角之间的关系.
(1)根据等边三角形的性质可知,,,利用可证,根据全等三角形的性质可得、;
(2)根据等腰直角三角形的性质可得,,利用利用可证,根据全等三角形的性质可得,从而可得,根据全等三角形对应角相等,可知,从而可得;
(3)过点作交于点,由知,根据全等三角形的性质可得,,从而可知,利用勾股定理可得.
【详解】(1)①解:和均为等边三角形,
∴,,,
∴,
∴,
在和中
,
∴,
∴;
②∵,
∴,
∴,
∴;
故答案为:,;
(2),.
理由如下:∵和均为等腰直角三角形,
∴,,
∵,
∴,
∴,
在和中
,
∴,
∴,,
∵,
∴,
∴,
∴,
∴;
(3)如图所示,过点A作交于点F,
由(2)知,
∴,,
又∵,
∴,
在中,,

∴.
8.如图①,在中,,,过点C在外作直线l,于点M,于点N.
(1)试说明:;
(2)如图②,将(1)中条件改为(),,请问(1)中的结论是否还成立?请说明理由.
(3)如图③,在中,点D为上一点,,,,,请直接写出的长.
【答案】(1)见解析
(2)成立,见解析
(3)8
【分析】本题考查了全等三角形的判定与性质,同角的余角相等,一线三等角模型证明全等,解题关键是熟悉一线三等角模型.
(1)先证明,再根据全等三角形的性质得出,,从而根据,可得;
(2)先判定成立,再说理由,先证明,再根据全等三角形的性质得出,,结合,可得;
(3)先证明,再根据全等三角形的性质得出,,根据,,,可求得.
【详解】(1)解:∵,,
∴,
∵,,


∴,
又,

,,


(2)成立,
理由:,,

又∵,,

,,
又,

(3),,,

又,,

,,
,,,

9.综合与实践
(1)操作判断
飞跃组在学习了三角形全等后展开了探究性学习活动. 如图1,在中,,,直线l经过点A,直线l,直线l,垂足分别为D,E.由此得到结论:,,之间的数量关系是 .
(2)开放探究
无敌组的同学们提出了如下的问题:如果三个角不是直角,那么结论是否会成立呢?如图2,将(1)中的条件改为在中,,D,A,E三点都在直线l上,并且有,其中为任意锐角或钝角.(1)中的结论是否成立?若成立,请给出证明;若不成立,请给出合理的解释.
(3)拓展应用
如图3,过的边、向外作正方形和正方形,是边上的高,延长交于点,求证:.
【答案】(1)
(2)(1)中的结论成立.证明见解析
(3)证明见解析
【分析】本题主要考查了全等三角形的判定与性质,灵活运用全等三角形的判定与性质是解题关键.
(1)先证明出,得出、,再根据线段的和差即可得到数量关系;
(2)证明,得出、,再根据线段的和差即可得到数量关系;
(3)如图,过点作于,的延长线于.同(1)可证、可得、、;再证明可得.
【详解】(1)解:直线,直线,





在和中,


,,

故答案为:;
(2)解:仍然成立,证明如下:



在和中,


,,

(3)证明:如图,过点作于,的延长线于.
同(1)可得,,
∴,
在和中,



10.综合与实践:
【问题情境】
(1)八上课本中有这样一道习题:如图1,和都是等边三角形,连接,.同学们发现以下结论:与的数量关系是______;
【变式思考】
(2)如图2,和都是等腰直角三角形,.若,,则四边形面积的最大值是______;
【拓展运用】
(3)如图3,在等腰直角三角形中,,是边上一点,连接,以为边向上作等腰直角三角形且,连接,用等式表示线段,,之间的数量关系,并证明.
【答案】(1)
(2)
(3),证明见解析
【分析】本题实质属于手拉手模型,主要考查了全等三角形的性质与判定、等腰三角形的性质与判定、等边三角形的性质,熟练掌握全等三角形和等腰三角形的性质与判定,学会添加适当的辅助线构造全等三角形是解题的关键.
(1)利用等边三角形的性质得到,,,再利用全等三角形判定定理证出,即可得出结论;
(2)连接和交于点,和交于点,利用等腰直角三角形的性质证出,得到,,进而得到,得出四边形面积,再利用线段的性质求出的最大值,即可求出四边形面积的最大值;
(3)延长至使得,连接,先证出,得到,,再通过证明得到,最后利用线段的和差即可得出结论.
【详解】(1)解:和都是等边三角形,
,,,
,即,
在和中,



故答案为:.
(2)解:如图,连接和交于点,和交于点,
和都是等腰直角三角形,
,,

,即,
在和中,


,,
又,


四边形面积,


四边形面积的最大值是.
故答案为:.
(3)解:,证明如下:
如图,延长至使得,连接,
等腰直角三角形,

,,,

,,,

等腰直角三角形且,


,即,
在和中,




21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表