人教版2026学年八年级数学上册压轴题专项训练专题04全等三角形之倍长中线模型与截长补短模型的二类综合题型(原卷版+解析)

资源下载
  1. 二一教育资源

人教版2026学年八年级数学上册压轴题专项训练专题04全等三角形之倍长中线模型与截长补短模型的二类综合题型(原卷版+解析)

资源简介

专题04 全等三角形之倍长中线模型与截长补短模型的二类综合题型
目录
典例详解
类型一、全等三角形模型之倍长中线模型
类型二、全等三角形模型之截长补短模型
压轴专练
类型一、全等三角形模型之倍长中线模型
1)倍长中线模型(中线型) 条件:AD为△ABC的中线。 结论: 证明:延长AD至点E,使DE=AD,连结CE。 ∵AD为△ABC的中线,∴BD=CD,∵∠BDA=∠CDE,∴△ABD≌△ECD(SAS) 2)倍长类中线模型(中点型) 条件:△ABC中,D为BC边的中点,E为AB边上一点(不同于端点)。 结论:△EDB≌△FDC。 证明:延长ED,使DF=DE,连接CF。 ∵D为BC边的中点,∴BD=DC,∵∠BDE=∠CDF,∴△EDB≌△FDC(SAS)
例1.如图,在中,平分,E为的中点,.求证:.
【变式1-1】老师在某节数学课上提出了如下问题:在中,,,求边上的中线的取值范围.某小组经过组内合作交流,得到了如下的解决方法(如图1):
①延长中线至点Q,使得;
②连接,把集中在中;
③利用三角形的三边关系,可得.
请根据该小组的方法思考,回答下列问题:
(1)直接写出的取值范围是___________;
(2)解题时,条件中若出现“中点”、“中线”等字样,可以考虑“倍长中线”,通过构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.
如图2,是的中线,,,,用等式表示和的数量关系并证明.
【变式1-2】【发现问题】
(1)数学活动课上,马老师提出了如下问题:如图1,在中,,.是的中线,求的取值范围.
【探究方法】第一小组经过合作交流,得到了如下的解决方法:①延长到E,使得;②连接,通过三角形全等把、、转化在中;③利用三角形的三边关系可得的取值范围为,从而得到的取值范围是________;
方法总结:解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形
【问题解决】
(2)如图2,是的中线,是的中线,,下列四个选项中:直接写出所有正确选项的序号是________.
①;②;③;④
【问题拓展】
(3)如图3,,,与互补,连接、,E是的中点,试说明:;
(4)如图4,在(3)的条件下,若,延长交于点F,,,则的面积是________.
类型二、全等三角形模型之截长补短模型
截长补短的方法适用于求证线段的和差倍分关系。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。 截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。 【常见模型及证法】 (1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。 例:如图,求证BE+DC=AD 方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE (2)补短:将短线段延长,证与长线段相等
例2.如图,交于,交于平分平分,直线经过点并与分别交于点.

(1)如图①,求证:;
(2)如图②,(1)中的结论是否成立?若成立,请证明:若不成立,直接写出三条线段的数量关系.
【变式2-1】阅读下面文字并填空:
数学习题课上李老师出了这样一道题:“如图1,在中,平分,.求证:”.
李老师给出了如下简要分析:要证就是要证线段的和差问题,李老师采用了‘截长法’,如图2,在上截取,连接,只要证__________即可,这就将证明线段和差问题转化为证明线段相等问题,只要证出____________________,得出及__________,再证出____________________,进而得出,则结论成立.
请仿照上题方法解决以下问题:
变式应用:如图,和是等腰三角形,且,,,,以A为顶点作一个角,角的两边分别交边延长线于点E、F,连接,则之间存在什么样的关系?并说明理由.
【变式2-2】如图1,在四边形中,,点,点分别在边,上,已知,.
(1)求证:;
(2)如图2,若点,点分别在边,的延长线上,其它条件不变,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请写出新的结论,并说明理由.
一、单选题
1.中,是边上的中线,若,,则的取值范围是( )
A. B. C. D.
∵是边上的中线,
∴,
在和中,
2.如图,在四边形中,是的平分线,且.若,则四边形的周长为( )
A. B. C. D.
3.如图,在长方形中,是中点,在边上,若,则( )
A.3 B.2 C.1.5 D.
二、填空题
4.如图,已知在中,平分,,则 . (用含的代数式表示).
5.如图,中,为的中点,是上一点,连接并延长交于.若,,,那么的长度为 .
6.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是 .
三、解答题
7.如图,、分别平分、,交于E点.
(1)如图1,求的度数.

(2)如图2,过点E的直线分别交、于B、C,猜想、、之间的存在的数量关系:_______.

(3)试证明(2)中的猜想.
.即.
8.阅读材料:截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,从而解决问题.依据上述材料,解答下列问题:如图1,在中,平分,交于点,且,求证:.
(1)为了证明结论“”,小亮在上截取,使得,连接,解答了这个问题,请按照小亮的思路写证明过程;(提示:如果一个三角形有两个角相等,那么这两个角所对的边也相等)
(2)如图2,在四边形中,已知,,,,是的高,,,求的长.
9.(1)方法呈现:
如图①:在中,若,点D为边的中点,求边上的中线的取值范围.解决此问题可以用如下方法:延长到点E使,再连接,可证,从而把集中在中,利用三角形三边的关系即可判断中线AD的取值范围是 (直接写出范围即可).这种解决问题的方法我们称为倍长中线法;
(2)探究应用:
如图②,在中,点D是的中点,于点D,交于点E,交于F,连接,判断与的大小关系并证明;
(3)问题拓展:
如图③,在四边形中, ,与的延长线交于点F、点E是的中点,若是的角平分线.试探究线段之间的数量关系,并加以证明.
10.【综合探究】为了进一步探究三角形中线的作用,数学兴趣小组合作交流时,小军在组内做了如下尝试:如图1,在中,是边上的中线,延长到,使,连接.
(1)【探究发现】图1中,由已知和作图能得到的理由是 .
A. B. C. D.
(2)【初步应用】如图2,在中,若,,求得的取值范围是________.
A. B. C. D.
【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
(3)【问题解决】如图3,分别以和为边作等腰直角三角形,即在中,,,在中,,,连接,试探究与的数量关系,并说明理由.
提示:.延长到,使,连接,根据(,,)证明,得,又因为,所以.
11.综合与探究
[问题情境]
(1)数学活动课上,老师出示了一个问题,如图(),在四边形中,平分,于点,且.
求证:
小明是这样思考的:因为平分,根据角平分线的性质,
所以过点作的延长线于点,先证明,再证明,即可证出,
小丽是这样思考的:根据截长补短的方法,延长至,使,连接,先证明,再证明,即可证出.请你帮助小明或小丽完成证明过程.
[实践探究]
(2)老师总结了他们的证明方法,有些题需要根据题的条件或求证添加辅助线,帮助我们完成证明过程.老师又出示了一个问题.如图(),在中,点为的中点,交于.
①求证:;
②求证:.
12.八年级数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.
【初步探索】
(1)如图1,在中,若.求边上的中线的取值范围.以下两位同学是这样思考的:
小聪:延长至,使,连接.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围.
小明:过点作,交的延长线于点.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围.
在这个过程中小聪同学证三角形全等用到的判定方法是_____;中线的取值范围是_____.
【灵活运用】(2)如图2,在中,点是的中点,,其中,连接,试判断与的数量关系,并说明理由.
【拓展延伸】
(3)如图3,在五边形中,,,,为边上的中线.
①求证:;②若,,则五边形的面积为_____.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)专题04 全等三角形之倍长中线模型与截长补短模型的二类综合题型
目录
典例详解
类型一、全等三角形模型之倍长中线模型
类型二、全等三角形模型之截长补短模型
压轴专练
类型一、全等三角形模型之倍长中线模型
1)倍长中线模型(中线型) 条件:AD为△ABC的中线。 结论: 证明:延长AD至点E,使DE=AD,连结CE。 ∵AD为△ABC的中线,∴BD=CD,∵∠BDA=∠CDE,∴△ABD≌△ECD(SAS) 2)倍长类中线模型(中点型) 条件:△ABC中,D为BC边的中点,E为AB边上一点(不同于端点)。 结论:△EDB≌△FDC。 证明:延长ED,使DF=DE,连接CF。 ∵D为BC边的中点,∴BD=DC,∵∠BDE=∠CDF,∴△EDB≌△FDC(SAS)
例1.如图,在中,平分,E为的中点,.求证:.
【答案】见解析
【分析】本题考查全等三角形的判定和性质,解题的关键是构造全等三角形:延长至点,使,证明,得到,再证明,即可得出结论.
【详解】证明:延长至点,使,连接,则:,
∵E为的中点,
∴,
∵,
∴,
∴,
∵平分,
∴,
∵,且,
∴,
∴,
又∵,,
∴,
∴,
∴.
【变式1-1】老师在某节数学课上提出了如下问题:在中,,,求边上的中线的取值范围.某小组经过组内合作交流,得到了如下的解决方法(如图1):
①延长中线至点Q,使得;
②连接,把集中在中;
③利用三角形的三边关系,可得.
请根据该小组的方法思考,回答下列问题:
(1)直接写出的取值范围是___________;
(2)解题时,条件中若出现“中点”、“中线”等字样,可以考虑“倍长中线”,通过构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.
如图2,是的中线,,,,用等式表示和的数量关系并证明.
【答案】(1)
(2),理由见解析
【分析】本题考查全等三角形的判定和性质,三角形三边关系,等腰直角三角形,关键是“倍长中线”,构造全等三角形.
(1)延长中线至点Q,使;连接,得到,判定,推出,由三角形三边关系定理得,即可得到,
(2)延长到K,使,连接,得到,判定,即可解决问题.
【详解】(1)解:如图1,延长中线至点Q,使;连接,
∴,
∵是的中线,
∴,
∵,
∴,
∴,
由三角形三边关系定理得:,
∴,
∴,
故答案为:.
(2)如图2,,理由如下:
延长到K,使,连接,
∴,
∵是的中线,
∴,
∵,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∵,
∴,
∴,
∴.
【变式1-2】【发现问题】
(1)数学活动课上,马老师提出了如下问题:如图1,在中,,.是的中线,求的取值范围.
【探究方法】第一小组经过合作交流,得到了如下的解决方法:①延长到E,使得;②连接,通过三角形全等把、、转化在中;③利用三角形的三边关系可得的取值范围为,从而得到的取值范围是________;
方法总结:解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形
【问题解决】
(2)如图2,是的中线,是的中线,,下列四个选项中:直接写出所有正确选项的序号是________.
①;②;③;④
【问题拓展】
(3)如图3,,,与互补,连接、,E是的中点,试说明:;
(4)如图4,在(3)的条件下,若,延长交于点F,,,则的面积是________.
【答案】(1);(2)②④;(3)见解析;(4)
【分析】(1)由“”可证,可得,由三角形的三边关系可求解;
(2)由“”可证,可得,,由“”可证,可得,,即可求解;
(3)由“”可证,可得,,由“”可证,可得,可得结论;
(4)由全等三角形的性质可得,,,由三角形的面积公式可求解.
【详解】(1)解:如图1中,延长至点,使.
在和中,







(2)解:如图2,延长至,使,连接,
是中线,

又,,

,,
,,

为中线,



又,

,,

∴正确选项的序号是:②④;
(3)证明:如图3,延长至,使,连接,
是的中点,

又,,

,,


与互补,


又,,



(4),,
,,,





,,


【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,中点的性质,平行线的判定和性质,添加恰当辅助线构造全等三角形是解题的关键.
类型二、全等三角形模型之截长补短模型
截长补短的方法适用于求证线段的和差倍分关系。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。 截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。 【常见模型及证法】 (1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。 例:如图,求证BE+DC=AD 方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE (2)补短:将短线段延长,证与长线段相等
例2.如图,交于,交于平分平分,直线经过点并与分别交于点.

(1)如图①,求证:;
(2)如图②,(1)中的结论是否成立?若成立,请证明:若不成立,直接写出三条线段的数量关系.
【答案】(1)见解析;
(2)(1)中结论不成立,;
【分析】(1)在上截取,连,根据题意证明,得到,,再由证明,由平角定义得到,则有,再证明,得到,则;
(2)延长交于点H,根据题意证明,得到,,再由平分,证明,得到,则.
【详解】(1)证明:如图,在上截取,连,

∵平分,
∴,
∵,,,
∴,
∴,,
∵,
∴,

∴,即,
∵平分,
∴,
∵,,,
∴,
∴,
∴.
(2)(1)中的结论不成立,;
理由:延长交于点H,

∵平分,
∴,
∵,
∴,
∴,
∵平分,
∴,
∵,,,
∴,
∴,,
∵,
∴,
∵,,,
∴,
∴,
∴.
【点睛】本题考查了平行线的性质、角平分线的定义以及全等三角形的性质和判定,解答过程中,根据题意做出辅助线构造全等三角形是解题关键.
【变式2-1】阅读下面文字并填空:
数学习题课上李老师出了这样一道题:“如图1,在中,平分,.求证:”.
李老师给出了如下简要分析:要证就是要证线段的和差问题,李老师采用了‘截长法’,如图2,在上截取,连接,只要证__________即可,这就将证明线段和差问题转化为证明线段相等问题,只要证出____________________,得出及__________,再证出____________________,进而得出,则结论成立.
请仿照上题方法解决以下问题:
变式应用:如图,和是等腰三角形,且,,,,以A为顶点作一个角,角的两边分别交边延长线于点E、F,连接,则之间存在什么样的关系?并说明理由.
【答案】;;;;;;变式应用:.理由见解析
【分析】本题考查了全等三角形的判定和性质,属于截长补短类辅助线.按照题干的要求填空即可;变式应用:在上截取,连接,求得,证明,得到,,得到,证明,得到,据此求解即可.
【详解】解:如图2,在上截取,连接,
只要证即可,这就将证明线段和差问题转化为证明线段相等问题,只要证出,得出及,再证出,进而得出,则结论成立.
故答案为:;;;;;;
变式应用:.理由如下:
在上截取,连接,
∵,,
∴,
∵,,
∴,
∴,
∴,
∴,
∴,,
∵,
∴,
∴,
∴,
∴,
∵,
∴.
【变式2-2】如图1,在四边形中,,点,点分别在边,上,已知,.
(1)求证:;
(2)如图2,若点,点分别在边,的延长线上,其它条件不变,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请写出新的结论,并说明理由.
【答案】(1)证明见解析
(2)不成立,,理由见解析
【知识点】全等的性质和SAS综合(SAS)、证一条线段等于两条线段和差(全等三角形的辅助线问题)
【分析】本题考查全等三角形的判定与性质,熟练掌握利用半角模型去截长补短是解题的关键.
(1)延长至点,使,构造,得出,,再利用,得出,证明,得出,再利用线段的和差即可证明;
(2)在上截取,构造,得出,,再利用,得出,证明,得出,再利用线段的和差即可证明.
【详解】(1)证明:如图,延长至点,使,
∵,,
∴,
在和中,

∴,
∴,,
∵,
∴,
在和中,

∴,
∴,
∵,
∴;
(2)解:如图,在上截取,
∵,,
∴,
在和中,

∴,
∴,,
∴,
即,
∵,
∴,
∴,
在和中,

∴,
∴,
∵,
∴,
即:.
一、单选题
1.中,是边上的中线,若,,则的取值范围是( )
A. B. C. D.
【答案】A
【分析】本题考查了全等三角形的应用,三角形三边关系的应用.延长到,使,连接,根据两边及其夹角分别对应相等的两个三角形全等可证明,根据全等三角形的对应边相等得出,根据三角形三边关系定理得出,代入求出即可求解.
【详解】解:延长到,使,连接,如图:
∵是边上的中线,
∴,
在和中,

∴,
∴,
在中,,
∴,
∴.
故选: A.
2.如图,在四边形中,是的平分线,且.若,则四边形的周长为( )
A. B. C. D.
【答案】B
【分析】在线段AC上作AF=AB,证明△AEF≌△AEB可得∠AFE=∠B,∠AEF=∠AEB,再证明△CEF≌△CED可得CD=CF,即可求得四边形的周长.
【详解】解:在线段AC上作AF=AB,
∵AE是的平分线,
∴∠CAE=∠BAE,
又∵AE=AE,
∴△AEF≌△AEB(SAS),
∴∠AFE=∠B,∠AEF=∠AEB,
∵AB∥CD,
∴∠D+∠B=180°,
∵∠AFE+∠CFE=180°,
∴∠D=∠CFE,
∵,
∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,
∴∠CEF=∠CED,
在△CEF和△CED中
∵,
∴△CEF≌△CED(AAS)
∴CD=CF,
∴四边形的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=,
故选:B.
【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键.
3.如图,在长方形中,是中点,在边上,若,则( )
A.3 B.2 C.1.5 D.
【答案】A
【分析】本题主要考查了三角形的面积,全等三角形的性质和判定,延长,交于点G,构造,利用三角形中线的性质得出,进而求出,再由求出答案.
【详解】解:延长,交于点G,
∵在长方形中,,,
∴,
在和中,

∴,
∴,,
∴,
∵,
∴,
∴,
∴,
∴,
∴,
故选:A.
二、填空题
4.如图,已知在中,平分,,则 . (用含的代数式表示).
【答案】a-b
【分析】在CB上截取CA′=CA,连接DA′,根据SAS证明△ADC≌△A′DC,根据△ADC≌△A′DC,得出DA′=DA,∠CA′D=∠A,再证明DA′=A′B即可解决问题.
【详解】在CB上截取CA′=CA,连接DA′,
∵CD平分∠ACB,
∴∠ACD=∠A′CD,
在△ADC和△A′DC中, ,
∴△ADC≌△A′DC(SAS),
∴DA′=DA,∠CA′D=∠A,
∵∠A=2∠B,∠CA′D=∠B+∠A′DB,
∴∠A′DB=∠B,
∴BA′=A′D=AD,
∴BC=CA′+BA′=AC+AD
∴AD=BC-AC=a-b,
故答案为:a-b.
【点睛】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰三角形的判定等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
5.如图,中,为的中点,是上一点,连接并延长交于.若,,,那么的长度为 .
【答案】12
【分析】本题考查了全等三角形的判定和性质,等腰三角形的判定与性质,延长到使,连接,通过,根据全等三角形的性质得到,,等量代换得到,由等腰三角形的性质得到,推出即可得解决问题.
【详解】解:如图,延长到使,连接,
在与中,


,,






,即,

故答案为:.
6.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是 .
【答案】120°
【分析】延长AB,使得AB=BE,延长AD,使得AD=DF,连接EF,与BC,DC相较于M,N,要使得△AMN的周长最小,则三角形的三边要共线,根据∠BAD=120°和△AMN的内角和是180°即可列出方程求解.
【详解】解:延长AB,使得AB=BE,延长AD,使得AD=DF,连接EF,与BC,DC相较于M,N
如图所示,此时△AMN的周长最小
∵∠ABM=90°
∴∠EBM=90°
在△AMB和△EMB中
∴△AMB≌△EMB
∴∠BEM=∠BAM
∴∠AMN=2∠BAM
同理可得:△AND≌△FDN
∴∠NAD=∠NFD
∴∠ANM=2∠NAD
设∠BAM=x,∠MAN=z,∠NAD=y
∵∠BAD=120°

解得:
即∠AMN+∠ANM=2×60°=120°.
故答案为:120°.
【点睛】本题主要考查的是三角形周长最小的条件,涉及到的知识点为全等三角形的判定及性质、三角形内角和的应用,正确添加合适的辅助线是解题的关键.
三、解答题
7.如图,、分别平分、,交于E点.
(1)如图1,求的度数.

(2)如图2,过点E的直线分别交、于B、C,猜想、、之间的存在的数量关系:_______.

(3)试证明(2)中的猜想.
【答案】(1)
(2)
(3)见解析
【分析】(1)根据平行线的性质得到,再根据角平分线的定义得到,,利用三角形内角和定理整体计算即可;
(2)根据图形猜想即可;
(3)在上截取,连接,证明得到,进一步推出,再证明,可得,进而证明.
【详解】(1)解:∵,
∴,
∵、分别平分、,
∴,,


(2)猜想:;
(3)
证明:在上截取,连接.

平分,

在和中,
,,,




又,

平分,

在和中,
,,,


.即.
【点睛】本题主要考查全等三角形的性质与判定、角平分线的定义、平行线的性质,关键是添加辅助线,构建对应全等三角形,使问题得以解决.
8.阅读材料:截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,从而解决问题.依据上述材料,解答下列问题:如图1,在中,平分,交于点,且,求证:.
(1)为了证明结论“”,小亮在上截取,使得,连接,解答了这个问题,请按照小亮的思路写证明过程;(提示:如果一个三角形有两个角相等,那么这两个角所对的边也相等)
(2)如图2,在四边形中,已知,,,,是的高,,,求的长.
【答案】(1)见解析
(2)的长为14
【分析】(1)在上截取,使得,连接,根据角平分线的定义得出,利用证明,从而可得,,再利用三角形外角的性质可得,从而可得,推出,进而得出,即可得证;
(2)在上截取,连接,由三角形内角和定理可得,证明得出,再证明得出,求出,即可得解.
【详解】(1)证明:在上截取,使得,连接,
平分,
∴,

∴,
,,
∵,

是的一个外角,






(2)解:在上截取,连接,
,,
∴,







,,









的长为14.
【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、三角形内角和定理、三角形外角的定义及性质,熟练掌握以上知识点并灵活运用,添加适当的辅助线是解此题的关键.
9.(1)方法呈现:
如图①:在中,若,点D为边的中点,求边上的中线的取值范围.解决此问题可以用如下方法:延长到点E使,再连接,可证,从而把集中在中,利用三角形三边的关系即可判断中线AD的取值范围是 (直接写出范围即可).这种解决问题的方法我们称为倍长中线法;
(2)探究应用:
如图②,在中,点D是的中点,于点D,交于点E,交于F,连接,判断与的大小关系并证明;
(3)问题拓展:
如图③,在四边形中, ,与的延长线交于点F、点E是的中点,若是的角平分线.试探究线段之间的数量关系,并加以证明.
【答案】(1);(2),理由见解析;(3),理由见解析
【分析】(1)由已知得出,即,为的一半,即可得出答案;
(2)延长至点,使,连接,,可得,得出,由线段垂直平分线的性质得出,在中,由三角形的三边关系得出即可得出结论;
(3)延长,交于点,根据平行和角平分线可证,也可证得,从而可得,即可得到结论.
本题是三角形综合题,主要考查了三角形的三边关系,全等三角形的判定与性质,角的关系等知识点,所以本题的综合性比较强,有一定的难度,通过作辅助线证明三角形全等是解题的关键.
【详解】解:(1)如图①,延长到点,使,连接,
是的中点,




在中,,



故答案为:;
(2),理由如下:
延长至点,使,连接、,如图②所示.
同(1)得:,

,,

在中,由三角形的三边关系得:


(3),理由如下:
如图③,延长,交于点,


在和中,



是的平分线,





10.【综合探究】为了进一步探究三角形中线的作用,数学兴趣小组合作交流时,小军在组内做了如下尝试:如图1,在中,是边上的中线,延长到,使,连接.
(1)【探究发现】图1中,由已知和作图能得到的理由是 .
A. B. C. D.
(2)【初步应用】如图2,在中,若,,求得的取值范围是________.
A. B. C. D.
【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
(3)【问题解决】如图3,分别以和为边作等腰直角三角形,即在中,,,在中,,,连接,试探究与的数量关系,并说明理由.
提示:.延长到,使,连接,根据(,,)证明,得,又因为,所以.
【答案】(1)B;(2)C;(3),理由见解析
【分析】(1)由是边上的中线,得出,结合,,可利用证明,得出答案即可;
(2)延长到,使,连接,得出,由(1)得,得出,再根据三角形的三边关系得出答案即可;
(3)延长到,使得,连接,由(1)得,得,,推出,得出,进一步推出,利用证明,得出,结合,进一步推出即可.
【详解】解:(1)是边上的中线,

在和中,


由已知和作图能得到的理由是,
故选:B;
(2)如图,延长到,使,连接,

由(1)得,

在中,,



故选:C;
(3),理由如下:
如图,延长到,使得,连接,

由(1)得,
,,




,,


在和中,






【点睛】本题是三角形综合题,考查了全等三角形的判定和性质、倍长中线模型、三角形的三边关系、平行线的判定与性质,灵活运用知识点推理证明是解题的关键.
11.综合与探究
[问题情境]
(1)数学活动课上,老师出示了一个问题,如图(),在四边形中,平分,于点,且.
求证:
小明是这样思考的:因为平分,根据角平分线的性质,
所以过点作的延长线于点,先证明,再证明,即可证出,
小丽是这样思考的:根据截长补短的方法,延长至,使,连接,先证明,再证明,即可证出.请你帮助小明或小丽完成证明过程.
[实践探究]
(2)老师总结了他们的证明方法,有些题需要根据题的条件或求证添加辅助线,帮助我们完成证明过程.老师又出示了一个问题.如图(),在中,点为的中点,交于.
①求证:;
②求证:.
【答案】(1)见解析;(2)①见解析;②见解析.
【分析】(1)根据题干所给证明方法完善证明过程即可得解;
(2)①由得,由,,根据同角的余角相等即可得解;②过作交的延长线于点,则,进而得,证明,得,,再证明得,即可得证.
【详解】(1)证明∶小明∶过点作的延长线于点,
∵平分,,
∴,,,
∵,
∴,
∴,
∵,,,
∴,

∴;
小丽∶延长至,使,连接,
∵,
∴,
∵平分
∴,
∵,,
∴,
∴,,
∴,
∵,,
∴,
∴,
∴.
(2)①∵
∴,
∴,
∵,
∴,
∴;
②过作交的延长线于点,
∴,
∴,
∴,


∵,,,
∴,
∴,,
∵点是的中点,
∴,
∵,,

∴,
∴.
【点睛】本题主要考查了全等三角形的判定及性质,同角的余角相等,中点定义,角平分线的性质,熟练掌握全等三角形的判定及性质是解题的关键.
12.八年级数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.
【初步探索】
(1)如图1,在中,若.求边上的中线的取值范围.以下两位同学是这样思考的:
小聪:延长至,使,连接.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围.
小明:过点作,交的延长线于点.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围.
在这个过程中小聪同学证三角形全等用到的判定方法是_____;中线的取值范围是_____.
【灵活运用】(2)如图2,在中,点是的中点,,其中,连接,试判断与的数量关系,并说明理由.
【拓展延伸】
(3)如图3,在五边形中,,,,为边上的中线.
①求证:;②若,,则五边形的面积为_____.
【答案】(1),;(2),理由见解析;(3)①证明见解析;②
【分析】(1)延长至,使, 连接,如图所示,证明得出, 在中, 由三角形的三边关系即可得出结论;
(2)延长至, 使, 连接, 如图所示,由(1)得:, 由全等三角形的性质得出, 得到, 证明得出, 则;延长交于, 证明即可得出结论;
(3)①延长,交于点,证明,根据全等三角形的性质得到,证明,得到,根据垂直的定义证明即可;②根据全等三角形的性质得到,求出的面积,结合图形计算.
【详解】(1)解:延长至,使, 连接,如图所示:
∵是边上的中线,,
∴,
在和中,



在中,由三角形三边关系可得,
∴, 即,

故答案为: ;;
(2)解:,,
理由如下:
延长至, 使, 连接,如图所示:
由(1)得:,
,,


即,




在和中,





延长交于,如图所示:




,即;
(3)①证明:延长,交于点,如图所示:






在和中,





在和中,


,即


②解:由①可知,,





五边形的面积

故答案为:.
【点睛】本题是三角形全等综合题,考查全等三角形的判定与性质、三角形倍长中线模型、三角形的三边关系、三角形内角和定理、角的和差关系、垂直判定与性质等知识, 通过作辅助线构造全等三角形是解题的关键.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表