人教版八年级数学上册 第十四章 全等三角形模型专题练习:考点02 角平分线辅助线方法【含答案】

资源下载
  1. 二一教育资源

人教版八年级数学上册 第十四章 全等三角形模型专题练习:考点02 角平分线辅助线方法【含答案】

资源简介

考点02 角平分线辅助线方法
一、填空题
1.如图所示,的外角的平分线CP与的平分线相交于点P,若,则_______.
2.如图,在中,、的角平分线相交于点,①若,则__________,②若,,则___________.
二、解答题
3.如图,ABC的外角∠DAC的平分线交BC边的垂直平分线于P点,PD⊥AB于D,PE⊥AC于E.
(1)求证:BD=CE;
(2)若AB=6cm,AC=10cm,求AD的长.
4.如图,在中,,,是的平分线,延长至点,,试求的度数.
5.如图,∠D=∠C=90°,点E是DC的中点,AE平分∠DAB,∠DEA=28°,求∠ABE的大小.
6.如图,在梯形ABCD中,AD∥BC,AE平分∠BAD,BE平分∠ABC,且AE、BE交CD于点E.试说明AD=AB﹣BC的理由.
7.已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AC+CD.
8.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BD交BF的延长线于点D,试说明:BF=2CD.
9.如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,
求证:∠ADC+∠B=180
10.如图所示,中,为的中点交的平分线于于,求证:.
参考答案
1.
【方法】
如图(见解析),设,从而可得,先根据三角形的外角性质可求出,再根据角平分线的性质可得,从而可得,然后根据直角三角形全等的判定定理与性质可得,最后根据平角的定义即可得.
【详解】
如图,过点P分别作于点M,于点N,于点E,
设,则,


是的平分线,


是的平分线,,,

同理可得:,

在和中,,

,即,
又,

解得,
故答案为:.
2.110° 70°
【方法】
①先根据三角形内角和求出∠BAC+∠BCA=140°,再根据角平分线的定义求出∠IAC+∠ICA的值,然后利用三角形内角和即可求解;
②在BC上取CD=AC,连接BI、DI,利用SAS证明△ACI与△DCI全等,可得AI=DI,∠CAI=∠CDI,再根据BC=AI+AC求出AI=BD,从而可得BD=DI,由三角形外角的性质可得∠CDI=2∠DBI,再根据角平分线的定义即可求出∠CDI=∠ABC,又∠BAC=2∠CAI,代入数据进行计算即可求解;
【详解】
①∵,
∴∠BAC+∠BCA=140°,
∵AI、CI分别是、的角平分线,
∴∠IAC+∠ICA=(∠BAC+∠BCA)=70°,
∴∠AIC=180°-70°=110°;
②如图1,在BC上取CD=AC,连接BI、DI,
∵CI平分∠ACB,
∴∠ACI=∠BCI,
在△ACI与△DCI中,

∴△ACI≌△DCI(SAS),
∴AI=DI,∠CAI=∠CDI,
∵BC=AI+AC,
∴BD=AI,
∴BD=DI,
∴∠IBD=∠BID,
∴∠CDI=∠IBD+∠BID=2∠IBD,
又∵AI、CI分别是∠BAC、∠ACB的平分线,
∴BI是∠ABC的平分线,
∴∠ABC=2∠IBD,∠BAC=2∠CAI,
∴∠CDI=∠ABC,
∴∠BAC=2∠CAI=2∠CDI=2∠ABC,
∵∠ABC=35°,
∴∠BAC=35°×2=70°.
3.【方法】
(1)连接、,根据线段垂直平分线上的点到两端点的距离相等可得,根据角平分线上的点到角的两边距离相等可得 ,然后利用“”证明和Rt全等,根据全等三角形对应边相等证明即可;
(2)利用“”证明和全等,根据全等三角形对应边相等可得,再根据、的长度表示出、,然后解方程即可.
【详解】
(1)证明:连接、,
点在的垂直平分线上,

是的平分线,
在和Rt中,

(2)解:在和中,

,,

即,
解得.
4.40°
【方法】
在上截取,连接,通过证明,可得,再通过证明,即可求得
【详解】
解:如图,在上截取,连接,
是的平分线,

在和中,

,,
∴DE=DF,

又,,


在和中,

故.
5.28°
【方法】
过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,即可求得∠ABE的度数.
【详解】
如图,过点E作EF⊥AB于F,
∵∠D=∠C=90°,AE平分∠DAB,
∴DE=EF,
∵E是DC的中点,
∴DE=CE,
∴CE=EF,
又∵∠C=90°,
∴点E在∠ABC的平分线上,
∴BE平分∠ABC,
又∵AD∥BC,
∴∠ABC+∠BAD=180°,
∴∠AEB=90°,
∴∠BEC=90°-∠AED=62°,
∴Rt△BCE中,∠CBE=28°,
∴∠ABE=28°.
6.【方法】
在AB上找到F使得AF=AD,易证△AEF≌△AED,可得AF=AD,∠AFE=∠D,根据平行线性质可证∠C=∠BFE,即可证明△BEC≌△BEF,可得BF=BC,即可解题.
【详解】
证明:在AB上找到F使得AF=AD,
∵AE平分∠BAD,
∴∠EAD=∠EAF,
∵在△AEF和△AED中,

∴△AEF≌△AED,(SAS)
∴AF=AD,∠AFE=∠D,
∵AD∥BC,
∴∠D+∠C=180°,
∵∠AFE+∠BFE=180°
∴∠C=∠BFE,
∵BE平分∠BAD,
∴∠FBE=∠C,
∵在△BEC和△BEF中,

∴△BEC≌△BEF,(AAS)
∴BF=BC,
∵AB=AF+BF,
∴AB=AD+BC,
即AD=AB﹣BC.
7.【方法】
在线段BC上截取BE=BA,连接DE.则只需证明CD=CE即可.结合角度证明∠CDE=∠CED.
【详解】
证明:在线段BC上截取BE=BA,连接DE.
∵BD平分∠ABC,
∴∠ABD=∠EBD∠ABC.
在△ABD和△EBD中,

∴△ABD≌△EBD.(SAS)
∴∠BED=∠A=108°,∠ADB=∠EDB.
又∵AB=AC,∠A=108°,∠ACB=∠ABC(180°﹣108°)=36°,
∴∠ABD=∠EBD=18°.
∴∠ADB=∠EDB=180°﹣18°﹣108°=54°.
∴∠CDE=180°﹣∠ADB﹣∠EDB
=180°﹣54°﹣54°
=72°.
∴∠DEC=180°﹣∠DEB
=180°﹣108°
=72°.
∴∠CDE=∠DEC.
∴CD=CE.
∴BC=BE+EC=AB+CD.
8.【方法】
作BF的中点E,连接AE、AD,根据直角三角形得到性质就可以得出AE=BE=EF,由BD平分∠ABC就可以得出∠ABE=∠DBC=22.5°,从而可以得出∠BAE=∠BAE=∠ACD=22.5°,∠AEF=45°,由∠BAC=90°,∠BDC=90°就可以得出A、B、C、D四点共圆,求出AD=DC,证△ADC≌△AEB推出BE=CD,从而得到结论.
【详解】
解:取BF的中点E,连接AE,AD,
∵∠BAC=90°,
∴AE=BE=EF,
∴∠ABD=∠BAE,
∵CD⊥BD,
∴A,B,C,D四点共圆,
∴∠DAC=∠DBC,
∵BF平分∠ABC,
∴∠ABD=∠DBC,
∴∠DAC=∠BAE,
∴∠EAD=90°,
∵AB=AC,
∴∠ABC=45°,
∴∠ABD=∠DBC=22.5°,
∴∠AED=45°,
∴AE=AD,
在△ABE与△ADC中,

∴△ABE≌△ADC,
∴BE=CD,
∴BF=2CD.
9.【方法】
延长AD过C作CF垂直AD于F,由条件可证△AFC≌△AEC,得到CF=CE.再由条件AD+AB=2AE可证BE=DF,所以△CDF≌△CEB,由全等的性质可得∠B=∠FDC
【详解】
证明:延长AD过C作CF垂直AD于F,
∵AC平分∠BAD,
∴∠FAC=∠EAC,
∵CE⊥AB,CF⊥AD,
∴∠AFC=∠AEC=90°,AC=AC,
∴△AFC≌△AEC(AAS),
∴AF=AE,CF=CE,
∵AD+AB=2AE,
又∵AD=AF DF,AB=AE+BE,AF=AE,
∴2AE=AE+BE+AE DF,
∴BE=DF,
在△CDF和△CBE中,,
∴△CDF≌△CBE(SAS),
∴∠B=∠FDC,
∵∠ADC+∠FDC=180°,
∴∠ADC+∠B=180 .
10.【方法】
连接EB、EC,过点E作交AB延长线于G,根据线段垂直平分线求出BE=CE,根据角平分线性质求出EF=EG,证出Rt△BGE≌Rt△CFE即可得BG=CF,求出△AFE≌△AGE,推出AF=AG,即可得出答案.
【详解】
证明:连接EB、EC,过点E作交AB延长线于G,
∵为的中点
∴DE是BC的垂直平分线,
∴BE=CE,
∵AE平分∠BAC,EG⊥AB,EF⊥AC,
∴∠BGE=∠EFC=90°,EF=EG,
在Rt△BGE和Rt△CFE中
∴Rt△BGE≌Rt△CFE(HL),
∴BG=CF,
∵AE平分∠BAC,EG⊥AB,EF⊥AC,
∴∠AFE=∠AGE=90°,∠FAE=∠GAE,
在△AFE和△AGE中
∴△AFE≌△AGE,
∴AF=AG,
∵BG=CF,
∴(AB+AC)=(AG-BG+AF+CF)
=(AF+AF)
=AF,
即AF=(AB+AC).

展开更多......

收起↑

资源预览