资源简介 第2课时 奇偶性的应用课时作业(满分:100分)基础练1.如果函数f(x)=是奇函数,那么g(x)等于( )[A]-x(x+1) [B]x(x+1)[C]x(x-1) [D]-x(x-1)【答案】 A【解析】 当x<0时,-x>0,所以f(-x)=-x(-x-1)=x(x+1),又f(x)为奇函数,所以f(-x)=-f(x),所以f(x)=-x(x+1),所以当x<0时,g(x)=-x(x+1).故选A.2.如果奇函数f(x)在[2,5]上单调递减且最小值是4,那么f(x)在[-5,-2]上( )[A]单调递减且最小值是-4[B]单调递减且最大值是-4[C]单调递增且最小值是-4[D]单调递增且最大值是-4【答案】 B【解析】 由题意,奇函数f(x)在区间[2,5]上单调递减,根据奇函数的对称性,可得函数f(x)在区间[-5,-2]上也单调递减,又由奇函数f(x)在区间[2,5]上的最小值是4,即f(5)=4,所以f(-5)=-f(5)=-4,所以函数f(x)在区间[-5,-2]上的最大值为f(-5)=-4.故选B.3.已知f(x)是奇函数,且在区间[0,+∞)上单调递增,则f(-0.5),f(-1),f(0)的大小关系是( )[A]f(-0.5)[B]f(-1)[C]f(0)[D]f(-1)【答案】 B【解析】 因为函数f(x)是奇函数,且f(x)在区间[0,+∞)上单调递增,所以f(x)在R上单调递增,所以f(-1)4.已知f(x)=(m-1)x2+2mx+3是偶函数,则f(a2-2a+4)与f(-2)的大小关系为( )[A]f(a2-2a+4)>f(-2)[B]f(a2-2a+4)=f(-2)[C]f(a2-2a+4)[D]不确定【答案】 C【解析】 因为f(x)=(m-1)x2+2mx+3是偶函数,则m=0,故f(x)=-x2+3,所以f(-2)=f(2),又可知f(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减;a2-2a+4=(a-1)2+3>2>0,所以f(a2-2a+4)5.(多选)已知函数f(x)为定义在[a,a+4]上的偶函数,当x∈[0,a+4]时,f(x)=-x,则( )[A]a=-2[B]当x∈[a,0]时,f(x)=+x[C]f(x)在[a,0]上单调递增[D]f(x)的值域为[-2,]【答案】 ACD【解析】 对于A项,因为f(x)是定义在[a,a+4]上的偶函数,所以a+a+4=0,解得 a=-2,故A正确;对于B项,当x∈[-2,0]时,-x∈[0,2],则f(x)=f(-x)=-(-x)=+x,故B错误;对于C项,因为y=与y=x都在[-2,0]上单调递增,所以f(x)=+x在[-2,0]上单调递增,故C正确;对于D项,因为f(x)=+x在[-2,0]上单调递增,且f(-2)=-2,f(0)=,所以当x∈[-2,0]时,f(x)∈[-2,],由偶函数的对称性可知,f(x)的值域为[-2,],故D正确.故选ACD.6.已知函数f(x)是(-∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式<0的解集是( )[A](-3,-1)∪(1,3)[B](-3,-1)∪(0,1)∪(3,+∞)[C](-∞,-3)∪(-1,1)∪(3,+∞)[D](-∞,-3)∪(-1,0)∪(0,1)∪(3,+∞)【答案】 D【解析】 由题设=<0,即<0.当x<0时,<0 f(x)>0,由题图可知,当x∈(-∞,-3)∪(-1,0)时,f(x)>0,当x∈(-3,-1)时,f(x)<0.当x>0时,<0 f(x)<0,根据奇函数的对称性,当x∈(0,1)∪(3,+∞)时,f(x)<0,当x∈(1,3)时,f(x)>0,所以不等式的解集为(-∞,-3)∪(-1,0)∪(0,1)∪(3,+∞).故选D.7.(5分)已知偶函数f(x)在[0,+∞)上单调递减,f(2)=0,若f(x-1)>0,则x的取值范围是 . 【答案】 (-1,3)【解析】 因为f(x)为偶函数,所以f(x-1)=f(|x-1|),又f(2)=0,f(x-1)>0,所以f(|x-1|)>f(2).因为|x-1|,2∈[0,+∞),且f(x)在[0,+∞)上单调递减,所以|x-1|<2,即-28.(5分)已知函数f(x)的定义域为R,若函数f(x)-2x为偶函数,函数f(x)-x2为奇函数,则f(1)= . 【答案】 3【解析】 函数f(x)的定义域为R,设函数g(x)=f(x)-2x, h(x)=f(x)-x2,因为g(x)-g(-x)=0,h(x)+h(-x)=0,所以f(x)-2x-[f(-x)+2x]=0,f(x)-x2+[f(-x)-x2]=0,所以解得f(x)=2x+x2,所以f(1)=3.9.(14分)已知函数f(x)为[-1,1]上的偶函数,当x∈[-1,0]时,f(x)=x2-ax,且f()=.(1)求函数f(x)的解析式;(2)若实数t满足不等式f(t-1)>f(-2t),求t的取值范围.【解】 (1)函数f(x)为[-1,1]上的偶函数,且当x∈[-1,0]时,f(x)=x2-ax,因为f(-)=f()=,即+a=,解得a=1,所以当x∈[-1,0]时,f(x)=x2-x.当0故有f(x)=(2)由(1)知f(x)=可得f(x)在[-1,0]上单调递减,在(0,1]上单调递增.又f(t-1)>f(-2t),所以 解得0≤t<.故t的取值范围是[0,).10.(15分)已知函数f(x)=,x∈R.(1)求不等式f(x)>的解集;(2)判断函数f(x)的奇偶性;(3)已知|f(x)|【解】 (1)因为f(x)=,所以不等式f(x)>,即>,显然x2+1>0,所以4x>x2+1,即x2-4x+1<0,解得2-的解集为(2-,2+).(2)f(x)为奇函数.理由如下:因为函数f(x)=,x∈R,又f(-x)==-=-f(x),所以f(x)为奇函数.(3)因为f(x)=为奇函数,且f(0)=0,当x>0时,f(x)=>0,且f(x)==≤=1,当且仅当x=,即x=1时,等号成立,所以当x>0时,f(x)∈(0,1],则当x<0时,f(x)∈[-1,0),所以f(x)∈[-1,1],因为|f(x)|显然a>0,所以-a1,即实数a的取值范围为(1,+∞).强化练11.已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且f(x),g(x)在[0,+∞)上单调递增,则下列结论错误的是( )[A]f(f(-1))[B]f(-g(1))[C]g(f(-1))[D]g(g(-1))【答案】 A【解析】 由题意可知,f(x)在(-∞,0)上单调递减,在[0,+∞)上单调递增,g(x)在R上单调递增.f(-1)=f(1)由条件可知,0=g(0)因为f(-1)=f(1)因为g(x)在R上单调递增,所以g(-1)12.已知函数f(x)在R上是减函数,且y=f(x-1)-2为奇函数.若实数t满足不等式f(t2-t)+f(-t-5)>4,则的取值范围是( )[A](-∞,) [B](,)[C](,+∞) [D](-1,3)【答案】 A【解析】 记g(x)=f(x-1)-2,则g(x)在R上为奇函数且是减函数,则不等式f(t2-t)+f(-t-5)>4可转化为f(t2-t)-2>-[f(-t-5)-2],即f(t2-t+1-1)-2>-[f(-t-5+1-1)-2],等价于g(t2-t+1)>g(4+t),所以可得t2-t+1<4+t,解得-113.(15分)已知定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+3,且当x>0时,f(x)>-3.(1)求f(0)的值,并证明f(x)+3为奇函数;(2)求证:f(x)在R上是增函数;(3)若f(1)=2,解关于x的不等式f(x2+x)+f(1-2x)>9.(1)【解】 定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+3,取x=y=0,则f(0)=f(0)+f(0)+3,所以f(0)=-3, x∈R,取y=-x,则f(0)=f(x)+f(-x)+3=-3,于是f(x)+3=-f(-x)-3=-[f(-x)+3],所以f(x)+3为奇函数.(2)【证明】 x1,x2∈R,x10,由当x>0时,f(x)>-3,得f(x2-x1)>-3,f(x2)=f(x1+(x2-x1))=f(x1)+f(x2-x1)+3>f(x1),所以f(x)在R上是增函数.(3)【解】 由f(1)=2,得f(2)=f(1)+f(1)+3=7,f(3)=f(1)+f(2)+3=12,不等式f(x2+x)+f(1-2x)>9 f(x2+x)+f(1-2x)+3>12,则f(x2-x+1)>f(3),由(2)知,x2-x+1>3,即x2-x-2>0,解得x<-1或 x>2,所以原不等式的解集为(-∞,-1)∪(2,+∞).拓展练14.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),满足对任意x1,x2∈(0,+∞),且x1≠x2,都有<0,且f(2)=2,则不等式f(x)>x的解集为( )[A](-2,0)∪(0,2)[B](-∞,-2)∪(0,2)[C](-2,0)∪(2,+∞)[D](-∞,-2)∪(2,+∞)【答案】 B【解析】 构造函数g(x)=,其中x≠0,则g(-x)===g(x),所以函数g(x)为偶函数,对任意x1,x2∈(0,+∞),且x1≠x2,都有<0,不妨设x1可得>,即g(x1)>g(x2),所以函数g(x)在(0,+∞)上单调递减,则该函数在(-∞,0)上单调递增,且g(2)==1,g(-2)=g(2)=1,当x>0时,由f(x)>x可得g(x)=>1=g(2),可得0当x<0时,由f(x)>x可得g(x)=<1=g(-2),可得x<-2.综上所述,不等式f(x)>x的解集为(-∞,-2)∪(0,2).故选B.第2课时 奇偶性的应用课时作业(满分:100分)基础练1.如果函数f(x)=是奇函数,那么g(x)等于( )[A]-x(x+1) [B]x(x+1)[C]x(x-1) [D]-x(x-1)2.如果奇函数f(x)在[2,5]上单调递减且最小值是4,那么f(x)在[-5,-2]上( )[A]单调递减且最小值是-4[B]单调递减且最大值是-4[C]单调递增且最小值是-4[D]单调递增且最大值是-43.已知f(x)是奇函数,且在区间[0,+∞)上单调递增,则f(-0.5),f(-1),f(0)的大小关系是( )[A]f(-0.5)[B]f(-1)[C]f(0)[D]f(-1)4.已知f(x)=(m-1)x2+2mx+3是偶函数,则f(a2-2a+4)与f(-2)的大小关系为( )[A]f(a2-2a+4)>f(-2)[B]f(a2-2a+4)=f(-2)[C]f(a2-2a+4)[D]不确定5.(多选)已知函数f(x)为定义在[a,a+4]上的偶函数,当x∈[0,a+4]时,f(x)=-x,则( )[A]a=-2[B]当x∈[a,0]时,f(x)=+x[C]f(x)在[a,0]上单调递增[D]f(x)的值域为[-2,]6.已知函数f(x)是(-∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式<0的解集是( )[A](-3,-1)∪(1,3)[B](-3,-1)∪(0,1)∪(3,+∞)[C](-∞,-3)∪(-1,1)∪(3,+∞)[D](-∞,-3)∪(-1,0)∪(0,1)∪(3,+∞)7.(5分)已知偶函数f(x)在[0,+∞)上单调递减,f(2)=0,若f(x-1)>0,则x的取值范围是 . 8.(5分)已知函数f(x)的定义域为R,若函数f(x)-2x为偶函数,函数f(x)-x2为奇函数,则f(1)= . 9.(14分)已知函数f(x)为[-1,1]上的偶函数,当x∈[-1,0]时,f(x)=x2-ax,且f()=.(1)求函数f(x)的解析式;(2)若实数t满足不等式f(t-1)>f(-2t),求t的取值范围.10.(15分)已知函数f(x)=,x∈R.(1)求不等式f(x)>的解集;(2)判断函数f(x)的奇偶性;(3)已知|f(x)|强化练11.已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且f(x),g(x)在[0,+∞)上单调递增,则下列结论错误的是( )[A]f(f(-1))[B]f(-g(1))[C]g(f(-1))[D]g(g(-1))12.已知函数f(x)在R上是减函数,且y=f(x-1)-2为奇函数.若实数t满足不等式f(t2-t)+f(-t-5)>4,则的取值范围是( )[A](-∞,) [B](,)[C](,+∞) [D](-1,3)13.(15分)已知定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+3,且当x>0时,f(x)>-3.(1)求f(0)的值,并证明f(x)+3为奇函数;(2)求证:f(x)在R上是增函数;(3)若f(1)=2,解关于x的不等式f(x2+x)+f(1-2x)>9.拓展练14.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),满足对任意x1,x2∈(0,+∞),且x1≠x2,都有<0,且f(2)=2,则不等式f(x)>x的解集为( )[A](-2,0)∪(0,2)[B](-∞,-2)∪(0,2)[C](-2,0)∪(2,+∞)[D](-∞,-2)∪(2,+∞)3.2.2 奇偶性第1课时 奇偶性的概念课时作业(满分:100分)基础练1.已知函数f(x)为奇函数,且当x>0时,f(x)=x2-1,则f(-2)等于( )[A]- [B]-[C]-3 [D]32.已知y=f(x),x∈(-a,a),F(x)=f(x)+f(-x),则F(x)是 ( )[A]奇函数[B]偶函数[C]既是奇函数又是偶函数[D]非奇非偶函数3.已知函数f(x)=(x2-a)(x+b)为奇函数,则( )[A]ab≠0 [B]a=0,b=0[C]a=0,b∈R [D]a∈R,b=04.(多选)下列函数中,既是奇函数,又在(0,+∞)上单调递增的是( )[A]f(x)=2x [B]f(x)=-[C]f(x)=x3 [D]f(x)=5.已知f(x)是定义在R上的奇函数,g(x)是定义在R上的偶函数,则下列说法正确的是( )[A]f(x)g(x)是偶函数[B]f(g(x))是奇函数[C]f(x)-g(x)是奇函数[D]g(f(x))是偶函数6.已知定义在R上的函数f(x)+1为奇函数,且f(-1)=-2,则f(1)等于( )[A]-2 [B]0[C]1 [D]27.(5分)设偶函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是 . 8.(5分)设f(x)=-x3-(a-2)x2+x是定义在[-b,b2-b-3]上的奇函数,则f(b)= . 9.(14分)判断下列函数的奇偶性.(1)f(x)=;(2)f(x)=(1-x);(3)f(x)=-;(4)f(x)=10.(14分)已知f(x)是定义在[-3,3]上的偶函数.(1)设g(x)是定义在[-3,3]上的奇函数,将下面两个图补充完整;(2)当-3强化练11.若函数f(x)=为偶函数,则实数a的取值范围是( )[A](-∞,-5][B](5,+∞)[C][-5,5][D](-∞,-5]∪[5,+∞)12.(5分)已知f(x)是定义在R上的奇函数,设函数g(x)=的最大值为M,最小值为m,则M+m= . 13.(15分)定义在(-1,1)上的函数f(x)满足:对任意的x,y∈(-1,1),都有f(y)-f(x)=f(),且当x∈(-1,0)时,f(x)<0.(1)求证:f(x)是奇函数;(2)判断f()+f(-)的正负,并说明理由.拓展练14.(多选)已知f(x)是二次函数,且对于任意的实数x,y,函数f(x)满足函数方程f(x)+f(y)=f(x+y)+xy+2,如果f(1)=.下列选项正确的是( )[A]f(0)=2[B]y=f(x)+x在(0,+∞)上单调递增[C]y=f(x)-x为偶函数[D]y=f(x+1)为偶函数3.2.2 奇偶性第1课时 奇偶性的概念课时作业(满分:100分)基础练1.已知函数f(x)为奇函数,且当x>0时,f(x)=x2-1,则f(-2)等于( )[A]- [B]-[C]-3 [D]3【答案】 C【解析】 由题意可知f(2)=22-1=3,因为函数f(x)是奇函数,所以f(-2)=-f(2)=-3.故选C.2.已知y=f(x),x∈(-a,a),F(x)=f(x)+f(-x),则F(x)是 ( )[A]奇函数[B]偶函数[C]既是奇函数又是偶函数[D]非奇非偶函数【答案】 B【解析】 因为F(-x)=f(-x)+f(x)=F(x),又(-a,a)关于原点对称,所以F(x)是偶函数.故选B.3.已知函数f(x)=(x2-a)(x+b)为奇函数,则( )[A]ab≠0 [B]a=0,b=0[C]a=0,b∈R [D]a∈R,b=0【答案】 D【解析】 由题意可知,f(-x)=-f(x),即[(-x)2-a](-x+b)=-(x2-a)(x+b),得2b(x2-a)=0对于 x∈R恒成立,所以a∈R,b=0.故选D.4.(多选)下列函数中,既是奇函数,又在(0,+∞)上单调递增的是( )[A]f(x)=2x [B]f(x)=-[C]f(x)=x3 [D]f(x)=【答案】 ABC【解析】 对于A,f(x)的定义域为R,关于原点对称,且f(-x)=-2x=-f(x),所以f(x)为奇函数,且f(x)=2x在R上单调递增,故A正确;对于B,f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f(-x)==-f(x),所以f(x)为奇函数,且f(x)=-在(0,+∞)上单调递增,故B正确;对于C,f(x)的定义域为R,关于原点对称,且f(-x)=(-x)3=-x3=-f(x),所以f(x)为奇函数,且f(x)=x3在R上单调递增,故C正确;对于D,f(x)的定义域为{x|x≠1},定义域不关于原点对称,所以f(x)为非奇非偶函数,故D错误.故选ABC.5.已知f(x)是定义在R上的奇函数,g(x)是定义在R上的偶函数,则下列说法正确的是( )[A]f(x)g(x)是偶函数[B]f(g(x))是奇函数[C]f(x)-g(x)是奇函数[D]g(f(x))是偶函数【答案】 D【解析】 因为f(x)是定义在R上的奇函数,所以f(-x)=-f(x);g(x)是定义在R上的偶函数,所以g(-x)=g(x),则f(-x)g(-x)=-f(x)g(x),所以f(x)g(x)为奇函数,故A错误;f(g(-x))=f(g(x)),所以f(g(x))为偶函数,故B错误;f(-x)-g(-x)=-f(x)-g(x),则f(x)-g(x)为非奇非偶函数,故C错误;g(f(-x))=g(-f(x))=g(f(x)),故g(f(x))为偶函数,故D正确.故选D.6.已知定义在R上的函数f(x)+1为奇函数,且f(-1)=-2,则f(1)等于( )[A]-2 [B]0[C]1 [D]2【答案】 B【解析】 因为函数f(x)+1为奇函数,所以f(-x)+1=-[f(x)+1] f(-x)+f(x)=-2,令x=1有f(-1)+f(1)=-2,又由f(-1)=-2,所以f(1)=0.故选B.7.(5分)设偶函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是 . 【答案】 {x|-5≤x<-2或2【解析】 因为偶函数的图象关于y轴对称,所以可根据对称性确定不等式f(x)<0的解集.因为当x∈[0,5]时,f(x)<0的解集为{x|2所以f(x)<0的解集是{x|-5≤x<-2或28.(5分)设f(x)=-x3-(a-2)x2+x是定义在[-b,b2-b-3]上的奇函数,则f(b)= . 【答案】 -24【解析】 因为f(x)=-x3-(a-2)x2+x是定义在[-b,b2-b-3]上的奇函数,所以f(-x)=-f(x),即-(-x)3-(a-2)(-x)2-x=-[-x3-(a-2)x2+x],所以a-2=0,解得a=2,所以f(x)=-x3+x,又-b+b2-b-3=0,解得b=3或b=-1.当b=-1时,定义域为[1,-1],不符合题意,舍去;当b=3时,定义域为[-3,3],符合题意,所以f(b)=f(3)=-24.9.(14分)判断下列函数的奇偶性.(1)f(x)=;(2)f(x)=(1-x);(3)f(x)=-;(4)f(x)=【解】 (1)由得定义域为D=[-1,0)∪(0,1], x∈D,-x∈D,又f(-x)==-f(x),所以函数f(x)为奇函数.(2)由≥0,得定义域为D=[-1,1),不关于原点对称,所以f(x)为非奇非偶函数.(3)由得x=±,即该函数的图象由点(-,0),(,0)构成,这两个点既关于原点对称,也关于y轴对称,所以f(x)既是奇函数又是偶函数.(4)f(x)的定义域为R, x∈R,-x∈R,当x<-1时,f(x)=x+2,-x>1,所以f(-x)=-(-x)+2=x+2=f(x).当x>1时,f(x)=-x+2,-x<-1,所以f(-x)=(-x)+2=-x+2=f(x).当-1≤x≤1时,f(x)=0,-1≤-x≤1,所以f(-x)=0=f(x).综上可知,对于定义域内的每一个x都有f(-x)=f(x),所以f(x)为偶函数.10.(14分)已知f(x)是定义在[-3,3]上的偶函数.(1)设g(x)是定义在[-3,3]上的奇函数,将下面两个图补充完整;(2)当-3【解】 (1)补充完整的两个图,如图所示.(2)由图可知,f(x)在[-3,-1]上的图象为线段,设其对应的解析式为f(x)=ax+b(-3≤x≤-1),则解得所以f(x)=-3x-5(-3≤x≤-1).当-3当-1≤m<0时,由图可知f(x)在[-3,m]上的最大值为f(-3)=4,最小值为f(-1)=-2,则f(x)在[-3,m]上的值域为[-2,4].综上可知,当-3强化练11.若函数f(x)=为偶函数,则实数a的取值范围是( )[A](-∞,-5][B](5,+∞)[C][-5,5][D](-∞,-5]∪[5,+∞)【答案】 A【解析】 函数f(x)=为偶函数,所以f(-x)=f(x),即得=,y=的定义域为[-5,5],则在[-5,5] 或其子集上,-x-|a+x|=x-|a-x|,即2x=|a-x|-|a+x|,所以必有所以又-5≤x≤5,可得a≤-5.故选A.12.(5分)已知f(x)是定义在R上的奇函数,设函数g(x)=的最大值为M,最小值为m,则M+m= . 【答案】 2【解析】 g(x)===1+,设h(x)=g(x)-1=,则h(-x)===-h(x),所以h(x)为奇函数.则h(x)max+h(x)min=0,即M-1+m-1=0,所以M+m=2.13.(15分)定义在(-1,1)上的函数f(x)满足:对任意的x,y∈(-1,1),都有f(y)-f(x)=f(),且当x∈(-1,0)时,f(x)<0.(1)求证:f(x)是奇函数;(2)判断f()+f(-)的正负,并说明理由.(1)【证明】 因为函数f(x)的定义域为(-1,1),关于原点对称,令x=y=0,得f(0)-f(0)=f(0),即f(0)=0,令y=0,可得f(0)-f(x)=f(-x),即-f(x)=f(-x),所以f(x)在(-1,1)上为奇函数.(2)【解】 f()+f(-)>0.理由如下:因为f(x)在(-1,1)上为奇函数,所以f()+f(-)=f()-f()=f()=f()=-f(-),当x∈(-1,0)时,f(x)<0,即f(-)<0,所以f()+f(-)=-f(-)>0.拓展练14.(多选)已知f(x)是二次函数,且对于任意的实数x,y,函数f(x)满足函数方程f(x)+f(y)=f(x+y)+xy+2,如果f(1)=.下列选项正确的是( )[A]f(0)=2[B]y=f(x)+x在(0,+∞)上单调递增[C]y=f(x)-x为偶函数[D]y=f(x+1)为偶函数【答案】 ACD【解析】 对于A,由f(x)+f(y)=f(x+y)+xy+2,令x=y=0,则f(0)+f(0)=f(0)+0+2,解得f(0)=2,故A正确;对于B,由f(x)+f(y)=f(x+y)+xy+2,令y=-x,则f(x)+f(-x)=f(0)-x2+2,即f(x)+f(-x)=4-x2,设二次函数f(x)=ax2+bx+c(a≠0),则ax2+bx+c+ax2-bx+c=4-x2,即2ax2+2c=-x2+4,可得则所以f(x)=-x2+bx+2,由f(1)=-+b+2=,解得b=1,所以f(x)=-x2+x+2,函数y=f(x)+x=-x2+2x+2,则其图象的对称轴为直线x=2,所以函数y=f(x)+x在(0,2)上单调递增,在(2,+∞)上单调递减,故B错误;对于C,由B选项的分析可知y=f(x)-x=-x2+2,则其图象的对称轴为直线x=0,所以函数y=f(x)-x为偶函数,故C正确;对于D,由B选项的分析可知y=f(x+1)=+(x+1)+2=-x2+,则其图象的对称轴为直线x=0,所以函数y=f(x+1)为偶函数,故D正确.故选ACD. 展开更多...... 收起↑ 资源列表 3.2.2 第1课时 奇偶性的概念 - 学生版.docx 3.2.2 第1课时 奇偶性的概念.docx 3.2.2 第2课时 奇偶性的应用 - 学生版.docx 3.2.2 第2课时 奇偶性的应用.docx