资源简介 习题课1 匀变速直线运动的平均速度和位移差公式核心 目标 1.理解、掌握平均速度公式、中点速度和中时速度公式.2.理解、掌握位移差公式Δx=aT2及其推论.类型1 匀变速直线运动的平均速度、中间时刻速度、位移中点速度1.平均速度==v平均 速度 公式 内容 做匀变速直线运动的物体,在一段时间t内的平均速度等于这段时间内__中间时刻__的瞬时速度,还等于这段时间初、末速度矢量和的__一半__ 即 ==v推导 ===v0+a·=v, ===v0+a·===,故==v注意:① =只适用于__匀变速直线运动__.对于非匀变速直线运动,只能用平均速度的定义式 __=__求解.② 在匀变速直线运动中,==v=是成立的. (2025·安徽芜湖期中)商场自动感应门如图所示,人走进时两扇门从静止开始同时向左右平移,经4 s恰好完全打开,两扇门移动距离均为2 m,若门从静止开始以相同加速度大小先匀加速运动,后匀减速运动,完全打开时速度恰好为0,则加速度的大小为( C )A.1.25 m/s2 B.1 m/s2C.0.5 m/s2 D.0.25 m/s2解析:设门的最大速度为v,根据匀变速直线运动的规律可知加速过程和减速过程的平均速度均为,且时间相等,均为2 s,根据x=×4,可得v=1 m/s,则加速度a== m/s2=0.5 m/s2,故选C. (2025·东莞期末)如图所示为某高速公路出口的ETC通道示意图.一汽车驶入ETC车道,到达O点的速度v0=10 m/s,此时开始匀减速运动,到达M时速度v=6 m/s,并以此速度匀速通过MN区域.已知MN的长度d=36 m,汽车匀减速直线运动的加速度大小a=1 m/s2.求:(1) 汽车从O到M所用的时间t.(2) OM间的距离x.(3) 汽车从O到N的平均速度大小.答案:(1) 4 s (2) 32 m (3) 6.8 m/s解析:(1) 根据匀变速直线运动速度时间关系可得v=v0-at解得汽车从O到M所用时间为t== s=4 s(2) 根据匀变速直线运动位移时间关系可得,OM间的距离为x=t=×4 m=32 m(3) 汽车从M到N所用时间为t′== s=6 s,则汽车从O到N的平均速度大小为== m/s=6.8 m/s.2.位移中点速度v=位移中 点的瞬 时速度 内容 在匀变速直线运动中,若初速度为v0,末速度为v,则__位移__中点的瞬时速度为v=推导 在匀变速直线运动中,对于一段位移x,设初速度为v0,末速度为v,加速度为a,位移中点的瞬时速度为v,前一半位移有v2-v=2a·=ax,后一半位移有v2-v2=2a·=ax;联立以上两式有v2-v=v2-v2,所以v=3.中间时刻的瞬时速度(v)与位移中点的瞬时速度(v)的关系:__v≥v__. 物体沿一直线运动,在t时间内通过的位移为x,它在中间位置x处的速度为v1,在中间时刻t时的速度为v2,则v1和v2的关系中错误的是( D )A.当物体做匀加速直线运动时,v1>v2B.当物体做匀减速直线运动时,v1>v2C.当物体做匀速直线运动时,v1=v2D.当物体做匀减速直线运动时,v1<v2解析:若物体做匀加速运动,作出v-t图像,由图可知中间时刻的速度v2,因图像与时间轴围成的面积表示物体通过的位移,故由图可知时物体的位移小于总位移的一半,故中间位置应在中间时刻的右侧,故此时的速度v1一定大于v2,同理若物体做匀减速运动时,v1也一定大于v2,A、B正确,D错误;当物体做匀速直线运动时,速度始终不变,故v1=v2,C正确.类型2 匀变速直线运动的位移差公式1.Δx=x2-x1=…=xn-xn-1=aT2.(1) 含义:做匀变速直线运动的物体,在任意两个连续相等的时间T内的__位移差__是个恒量.(2) 应用①判断物体是否做__匀变速直线运动__如果Δx=x2-x1=x3-x2=…=xn-xn-1=aT2成立,则a为一恒量,说明物体做匀变速直线运动.②求加速度:利用Δx=aT2,可得 __a=__.2.xn-xm=(n-m)aT2,如x4-x1=3aT2,x5-x2=3aT2,x6-x3=3aT2. (2024·安徽合肥一中)某质点由A经B、C到D做匀加速直线运动,历时6 s.前2 s和后2 s位移分别为AB=8 m和CD=12 m,该质点的加速度及经过B点的瞬时速度大小分别是( B )A.1 m/s2,5 m/s B.0.5 m/s2,4.5 m/sC.1 m/s2,10 m/s D.0.5 m/s2,9 m/s解析:由匀变速直线运动规律有CD-AB=2aT2,该质点的加速度a== m/s2=0.5 m/s2,由匀变速直线运动规律Δs=CD-BC=BC-AB,解得BC=10 m,经过B点的瞬时速度的大小vB== m/s=4.5 m/s,故选B.1.(2025·惠州期中)一质点做匀减速直线运动时,速度变化Δv时发生位移x1,紧接着速度变化同样的Δv时发生位移x2,则该质点的加速度大小为( D )A.(Δv)2 B.(Δv)2C. D.解析:设该质点的加速度大小为a,则有T=,根据匀变速直线运动推论Δx=x1-x2=aT2,联立解得a=,故选D.2.一物体做匀变速直线运动,某时刻的速度为v1,经过t时间运动的位移为x,速度变为v2,则下列说法中错误的是( B )A.平均速度等于B.中间位置的瞬时速度等于C.平均速度等于D.中间时刻的瞬时速度等于解析:根据平均速度的公式可得物体的平均速度为=,A正确;根据匀变速直线运动中间位置的瞬时速度的推论可知v中=,B错误;匀变速直线运动的面积法求得位移的表达式为x=t,则平均速度==,C正确;根据匀变速直线运动的中间时刻的速度等于平均速度可知,物体中间时刻的瞬时速度v=,D正确.3.(2025·大湾区期末)(多选)如图所示,一辆汽车在平直公路上做匀加速直线运动,从某时刻开始计时,汽车在第1 s内、第2 s内、第3 s内前进的距离分别是5.4 m、7.2 m、9.0 m.关于汽车,下列说法中正确的有( CD )A.加速度大小为3.6 m/s2B.在这3 s内的平均速度大小为12.5 m/sC.在1.5 s末的瞬时速度大小为7.2 m/sD.在3 s末的瞬时速度大小为9.9 m/s解析:根据Δx=aT2,可得加速度大小为a== m/s2=1.8 m/s2,故A错误;汽车在这3 s内的平均速度大小为== m/s=7.2 m/s,汽车在1.5 s末的瞬时速度等于前3 s的平均速度,则汽车在1.5 s末的瞬时速度是7.2 m/s,故B错误,C正确;汽车在3 s末的瞬时速度为v3=v1.5+aΔt=7.2 m/s+1.8×1.5 m/s=9.9 m/s,故D正确.1.汽车以某一初速度开始做匀加速直线运动,第1 s内行驶了1 m,第2 s内行驶了2 m,则汽车第3 s内的平均速度为( B )A.2 m/s B.3 m/sC.4 m/s D.5 m/s解析:根据匀变速直线的推论可知x2-x1=x3-x2,则x3=3 m,则第3 s内的平均速度为3==3 m/s,故选B.2.(2025·揭阳期中)如图所示,小明同学在玩弹珠游戏时,将弹珠从A点以速度大小为1 m/s沿玻璃斜面向上弹出,弹珠先向上运动,再返回斜面底端B点时速度大小为2 m/s,且AB的距离为1 m.若弹珠从A点运动到B点的过程可以看成加速度不变的直线运动,规定沿斜面向上为正方向,那么下列物理量的等式中正确的是( B )A.弹珠的初速度vA=1 m/s,末速度vB=2 m/sB.弹珠的速度变化量Δv=-3 m/sC.弹珠的位移s=1 mD.弹珠的平均速度=1.5 m/s解析:规定沿斜面向上为正方向,故初速度为vA=1 m/s,末速度为vB=-2 m/s.故A错误;弹珠的速度变化量Δv=vB-vA=-3 m/s,故B正确;规定沿斜面向上为正方向,则弹珠的位移为-1 m,故C错误;弹珠的平均速度==-0.5 m/s,故D错误.3.物体做匀加速直线运动,相继经过两段距离为16 m的路程,第一段用时4 s,第二段用时2 s,则物体的加速度是( B )A. m/s2 B. m/s2C. m/s2 D. m/s2解析: 根据某段时间内的平均速度等于中间时刻的瞬时速度知,从开始运动第一段时计时,则2 s时的瞬时速度等于0~4 s内的平均速度v1==4 m/s,5 s时的瞬时速度等于4~6 s内的平均速度v2==8 m/s,两个中间时刻的时间间隔为Δt=2 s+1 s=3 s,根据加速度定义可得a== m/s2= m/s2,故选B.4.(多选)某汽车沿一直线运动,在t时间内通过的位移为L,在 处速度为v1,在 处速度为v2.下列说法中正确的是( AD )A.若汽车做匀加速运动,则v1>v2B.若汽车做匀加速运动,则v1<v2C.若汽车做匀减速运动,则v1<v2D.若汽车做匀减速运动,则v1>v2解析:设汽车的初速度为v0,末速度为v,则在中间时刻的速度v2=,中间位置的速度v1=,可得v-v=-=>0,即无论汽车做匀加速运动还是匀减速运动,都有v1>v2,A、D正确.5.一小球沿斜面匀加速滑下,依次经过A、B、C三点,已知AB=6 m,BC=10 m,小球经过AB和BC两段所用的时间均为2 s,则小球经过A、B、C三点时的速度大小分别是( B )A.2 m/s,3 m/s,4 m/s B.2 m/s,4 m/s,6 m/sC.3 m/s,4 m/s,5 m/s D.3 m/s,5 m/s,7 m/s解析:根据小球做匀加速直线运动的特点,两点之间的平均速度等于中间时刻的瞬时速度,故B点的速度等于AC段的平均速度,vB==4 m/s,又因为连续相等时间内的位移之差相等,即Δx=at2,则由Δx=BC-AB=at2,解得a=1 m/s2,A点的速度vA=vB-at,解得vA=2 m/s,C点的速度vC=vB+at,解得vC=6 m/s,B正确.6.小物块以一定初速度滑上光滑固定斜面,沿斜面向上依次有A、B、C三点,物块在AB间的平均速度为BC间平均速度的4倍,到达C点时速度为0,则AC∶BC为( D )A.3∶1 B.7∶1C.5∶1 D.9∶1解析:设小物块在A点的速度为vA,B点的速度为vB,可得∶=4∶1,解得vA∶vB=3∶1,根据v2=2as,可得s=,则AC∶BC=v∶v=9∶1,故选D.7.(多选)小明将一小球从固定斜面上的A点由静止释放,小球沿斜面匀加速下滑,下滑0.2 m经过B点,又下滑0.6 m经过C点,已知小球通过AB和BC两段所用的时间均为1 s,则下列说法中正确的是( BC )A.经过B点时的速度大小为0.2 m/sB.经过B点时的速度大小为0.4 m/sC.小球沿斜面下滑的加速度大小为0.4 m/s2D.小球沿斜面下滑的加速度大小为0.8 m/s2解析:根据匀变速直线运动的推论可知:小球经过B点的速度等于AC段的平均速度vB== m/s=0.4 m/s,A错误,B正确;由BC-AB=aT2,得a== m/s2=0.4 m/s2,C正确,D错误.8.(2025·惠州期末)某一列火车车头以72 km/h 的初速度进入某一座石桥后,立即做匀减速直线运动,经历了100 s后,该列火车车头即将下桥,此时速度为36 km/h,已知该石桥桥面水平,求:(1) 此过程火车的加速度大小.(2) 该石桥桥面的长度.(3) 此过程列车的平均速度大小.答案:(1) 0.1 m/s2 (2) 1 500 m (3) 15 m/s解析:(1) v0=72 km/h=20 m/s,vt=36 km/h=10 m/s根据加速度的公式a=解得a=-0.1 m/s2,“-”代表方向与初速度方向相反.(2) 根据匀变速直线运动速度—位移关系有v-v=2aL解得L=1 500 m(3) 根据匀变速直线运动特殊规律=解得=15 m/s9.(2024·安徽蚌埠期末)如图所示,物体自O点由静止开始做匀加速直线运动,A、B、C、D是轨迹上的四点,测得AB=4 m,BC=6 m,CD=8 m,且物体通过AB、BC、CD所用时间相等,则O、A之间的距离为( B )A. m B. mC. m D. m解析:设物体的加速度为a,通过AB的时间为t,B点的速度等于AC段的平均速度,则vB== m/s,又因为两个连续相等时间间隔内的位移差为恒量,有at2=2 m,那么OA=-AB= m-4 m= m,B正确.10.(多选)一个做匀加速直线运动的物体,先后经过A、B两点时的速度分别是3v和9v,经过AB的时间是t,则下列说法中正确的是( BC )A.经过A、B中点的速度是6vB.经过A、B中间时刻的速度是6vC.前 时间通过的位移比后 时间通过的位移少1.5vtD.前 位移所用时间是后 位移所用时间的3倍解析:经过A、B中点的速度v==3v,A错误;经过A、B中间时刻的速度是v==6v,B正确;前时间通过的位移比后时间通过的位移少Δx=·-·=1.5vt,C正确;前位移所需时间t1==,后位移所需时间t2==,则前位移所需时间不是后位移所需时间的3倍,D错误.11.一辆汽车从静止开始做匀加速直线运动,已知途中先后经过相距27 m的A、B两点所用时间为2 s,汽车经过B点时的速度为15 m/s.求:(1) 汽车经过A点时的速度大小.(2) 汽车从出发点到A点的平均速度大小.答案:(1) 12 m/s (2) 6 m/s解析:设汽车运动方向为正方向,则vB=15 m/s,tAB=2 s,sAB=27 m(1) 设过A点时速度为vA,则AB段平均速度AB==故由sAB=AB·tAB=·tAB解得vA=12 m/s(2) 设起点为O点,对OA段:平均速度OA===6 m/s(共40张PPT)第二章匀变速直线运动的研究习题课1 匀变速直线运动的平均速度和位移差公式核心 目标 1.理解、掌握平均速度公式、中点速度和中时速度公式.2.理解、掌握位移差公式Δx=aT2及其推论.能力提升 典题固法匀变速直线运动的平均速度、中间时刻速度、位移中点速度类型1平均 速度 公式 内容 做匀变速直线运动的物体,在一段时间t内的平均速度等于这段时间内 中间时刻 的瞬时速度,还等于这段时间初、末速度矢量和的 一半 . (2025·安徽芜湖期中)商场自动感应门如图所示,人走进时两扇门从静止开始同时向左右平移,经4 s恰好完全打开,两扇门移动距离均为2 m,若门从静止开始以相同加速度大小先匀加速运动,后匀减速运动,完全打开时速度恰好为0,则加速度的大小为 ( )A.1.25 m/s2 B.1 m/s2C.0.5 m/s2 D.0.25 m/s21C (2025·东莞期末)如图所示为某高速公路出口的ETC通道示意图.一汽车驶入ETC车道,到达O点的速度v0=10 m/s,此时开始匀减速运动,到达M时速度v=6 m/s,并以此速度匀速通过MN区域.已知MN的长度d=36 m,汽车匀减速直线运动的加速度大小a=1 m/s2.求:(1) 汽车从O到M所用的时间t.答案:(1) 4 s2解析:(1) 根据匀变速直线运动速度时间关系可得v=v0-at(2) OM间的距离x.答案:(2) 32 m(3) 汽车从O到N的平均速度大小.答案:(3) 6.8 m/sA.当物体做匀加速直线运动时,v1>v2B.当物体做匀减速直线运动时,v1>v2C.当物体做匀速直线运动时,v1=v2D.当物体做匀减速直线运动时,v1<v23D匀变速直线运动的位移差公式1.Δx=x2-x1=…=xn-xn-1=aT2.(1) 含义:做匀变速直线运动的物体,在任意两个连续相等的时间T内的 位移差 是个恒量.(2) 应用①判断物体是否做 匀变速直线运动 .如果Δx=x2-x1=x3-x2=…=xn-xn-1=aT2成立,则a为一恒量,说明物体做匀变速直线运动.2.xn-xm=(n-m)aT2,如x4-x1=3aT2,x5-x2=3aT2,x6-x3=3aT2.类型2 (2024·安徽合肥一中)某质点由A经B、C到D做匀加速直线运动,历时6 s.前2 s和后2 s位移分别为AB=8 m和CD=12 m,该质点的加速度及经过B点的瞬时速度大小分别是 ( )A.1 m/s2,5 m/s B.0.5 m/s2,4.5 m/sC.1 m/s2,10 m/s D.0.5 m/s2,9 m/s4B随堂内化 即时巩固1.(2025·惠州期中)一质点做匀减速直线运动时,速度变化Δv时发生位移x1,紧接着速度变化同样的Δv时发生位移x2,则该质点的加速度大小为 ( )D2.一物体做匀变速直线运动,某时刻的速度为v1,经过t时间运动的位移为x,速度变为v2,则下列说法中错误的是 ( )B3.(2025·大湾区期末)(多选)如图所示,一辆汽车在平直公路上做匀加速直线运动,从某时刻开始计时,汽车在第1 s内、第2 s内、第3 s内前进的距离分别是5.4 m、7.2 m、9.0 m.关于汽车,下列说法中正确的有 ( ) A.加速度大小为3.6 m/s2B.在这3 s内的平均速度大小为12.5 m/sC.在1.5 s末的瞬时速度大小为7.2 m/sD.在3 s末的瞬时速度大小为9.9 m/sCD配套新练案1.汽车以某一初速度开始做匀加速直线运动,第1 s内行驶了1 m,第2 s内行驶了2 m,则汽车第3 s内的平均速度为 ( )A.2 m/s B.3 m/sC.4 m/s D.5 m/sB2.(2025·揭阳期中)如图所示,小明同学在玩弹珠游戏时,将弹珠从A点以速度大小为1 m/s沿玻璃斜面向上弹出,弹珠先向上运动,再返回斜面底端B点时速度大小为2 m/s,且AB的距离为1 m.若弹珠从A点运动到B点的过程可以看成加速度不变的直线运动,规定沿斜面向上为正方向,那么下列物理量的等式中正确的是( )A.弹珠的初速度vA=1 m/s,末速度vB=2 m/sB.弹珠的速度变化量Δv=-3 m/sC.弹珠的位移s=1 mB3.物体做匀加速直线运动,相继经过两段距离为16 m的路程,第一段用时4 s,第二段用时2 s,则物体的加速度是 ( )BA.若汽车做匀加速运动,则v1>v2 B.若汽车做匀加速运动,则v1<v2C.若汽车做匀减速运动,则v1<v2 D.若汽车做匀减速运动,则v1>v2AD5.一小球沿斜面匀加速滑下,依次经过A、B、C三点,已知AB=6 m,BC=10 m,小球经过AB和BC两段所用的时间均为2 s,则小球经过A、B、C三点时的速度大小分别是 ( )A.2 m/s,3 m/s,4 m/s B.2 m/s,4 m/s,6 m/sC.3 m/s,4 m/s,5 m/s D.3 m/s,5 m/s,7 m/sB6.小物块以一定初速度滑上光滑固定斜面,沿斜面向上依次有A、B、C三点,物块在AB间的平均速度为BC间平均速度的4倍,到达C点时速度为0,则AC∶BC为 ( )A.3∶1 B.7∶1C.5∶1 D.9∶1D7.(多选)小明将一小球从固定斜面上的A点由静止释放,小球沿斜面匀加速下滑,下滑0.2 m经过B点,又下滑0.6 m经过C点,已知小球通过AB和BC两段所用的时间均为1 s,则下列说法中正确的是 ( )A.经过B点时的速度大小为0.2 m/sB.经过B点时的速度大小为0.4 m/sC.小球沿斜面下滑的加速度大小为0.4 m/s2D.小球沿斜面下滑的加速度大小为0.8 m/s2BC8.(2025·惠州期末)某一列火车车头以72 km/h 的初速度进入某一座石桥后,立即做匀减速直线运动,经历了100 s后,该列火车车头即将下桥,此时速度为36 km/h,已知该石桥桥面水平,求:(1) 此过程火车的加速度大小.答案:(1) 0.1 m/s2解析:(1) v0=72 km/h=20 m/s,vt=36 km/h=10 m/s解得a=-0.1 m/s2,“-”代表方向与初速度方向相反.(2) 该石桥桥面的长度.答案:(2) 1 500 m(3) 此过程列车的平均速度大小.答案:(3) 15 m/s9.(2024·安徽蚌埠期末)如图所示,物体自O点由静止开始做匀加速直线运动,A、B、C、D是轨迹上的四点,测得AB=4 m,BC=6 m,CD=8 m,且物体通过AB、BC、CD所用时间相等,则O、A之间的距离为 ( )B10.(多选)一个做匀加速直线运动的物体,先后经过A、B两点时的速度分别是3v和9v,经过AB的时间是t,则下列说法中正确的是 ( )A.经过A、B中点的速度是6vB.经过A、B中间时刻的速度是6vBC11.一辆汽车从静止开始做匀加速直线运动,已知途中先后经过相距27 m的A、B两点所用时间为2 s,汽车经过B点时的速度为15 m/s.求:(1) 汽车经过A点时的速度大小.答案:(1) 12 m/s(2) 汽车从出发点到A点的平均速度大小.答案:(2) 6 m/s解析:设汽车运动方向为正方向,则vB=15 m/s,tAB=2 s,sAB=27 m(2) 设起点为O点,对OA段:平均速度谢谢观赏习题课1 匀变速直线运动的平均速度和位移差公式核心 目标 1.理解、掌握平均速度公式、中点速度和中时速度公式.2.理解、掌握位移差公式Δx=aT2及其推论.类型1 匀变速直线运动的平均速度、中间时刻速度、位移中点速度1.平均速度==v平均 速度 公式 内容 做匀变速直线运动的物体,在一段时间t内的平均速度等于这段时间内__中间时刻__的瞬时速度,还等于这段时间初、末速度矢量和的__一半__ 即 ==v推导 ===v0+a·=v, ===v0+a·===,故==v注意:① =只适用于__匀变速直线运动__.对于非匀变速直线运动,只能用平均速度的定义式 __=__求解.② 在匀变速直线运动中,==v=是成立的. (2025·安徽芜湖期中)商场自动感应门如图所示,人走进时两扇门从静止开始同时向左右平移,经4 s恰好完全打开,两扇门移动距离均为2 m,若门从静止开始以相同加速度大小先匀加速运动,后匀减速运动,完全打开时速度恰好为0,则加速度的大小为( )A.1.25 m/s2 B.1 m/s2C.0.5 m/s2 D.0.25 m/s2 (2025·东莞期末)如图所示为某高速公路出口的ETC通道示意图.一汽车驶入ETC车道,到达O点的速度v0=10 m/s,此时开始匀减速运动,到达M时速度v=6 m/s,并以此速度匀速通过MN区域.已知MN的长度d=36 m,汽车匀减速直线运动的加速度大小a=1 m/s2.求:(1) 汽车从O到M所用的时间t.(2) OM间的距离x.(3) 汽车从O到N的平均速度大小.2.位移中点速度v=位移中 点的瞬 时速度 内容 在匀变速直线运动中,若初速度为v0,末速度为v,则__位移__中点的瞬时速度为v=推导 在匀变速直线运动中,对于一段位移x,设初速度为v0,末速度为v,加速度为a,位移中点的瞬时速度为v,前一半位移有v2-v=2a·=ax,后一半位移有v2-v2=2a·=ax;联立以上两式有v2-v=v2-v2,所以v=3.中间时刻的瞬时速度(v)与位移中点的瞬时速度(v)的关系:__v≥v__. 物体沿一直线运动,在t时间内通过的位移为x,它在中间位置x处的速度为v1,在中间时刻t时的速度为v2,则v1和v2的关系中错误的是( )A.当物体做匀加速直线运动时,v1>v2B.当物体做匀减速直线运动时,v1>v2C.当物体做匀速直线运动时,v1=v2D.当物体做匀减速直线运动时,v1<v2类型2 匀变速直线运动的位移差公式1.Δx=x2-x1=…=xn-xn-1=aT2.(1) 含义:做匀变速直线运动的物体,在任意两个连续相等的时间T内的__位移差__是个恒量.(2) 应用①判断物体是否做__匀变速直线运动__如果Δx=x2-x1=x3-x2=…=xn-xn-1=aT2成立,则a为一恒量,说明物体做匀变速直线运动.②求加速度:利用Δx=aT2,可得 __a=__.2.xn-xm=(n-m)aT2,如x4-x1=3aT2,x5-x2=3aT2,x6-x3=3aT2. (2024·安徽合肥一中)某质点由A经B、C到D做匀加速直线运动,历时6 s.前2 s和后2 s位移分别为AB=8 m和CD=12 m,该质点的加速度及经过B点的瞬时速度大小分别是( )A.1 m/s2,5 m/s B.0.5 m/s2,4.5 m/sC.1 m/s2,10 m/s D.0.5 m/s2,9 m/s1.(2025·惠州期中)一质点做匀减速直线运动时,速度变化Δv时发生位移x1,紧接着速度变化同样的Δv时发生位移x2,则该质点的加速度大小为( )A.(Δv)2 B.(Δv)2C. D.2.一物体做匀变速直线运动,某时刻的速度为v1,经过t时间运动的位移为x,速度变为v2,则下列说法中错误的是( )A.平均速度等于B.中间位置的瞬时速度等于C.平均速度等于D.中间时刻的瞬时速度等于3.(2025·大湾区期末)(多选)如图所示,一辆汽车在平直公路上做匀加速直线运动,从某时刻开始计时,汽车在第1 s内、第2 s内、第3 s内前进的距离分别是5.4 m、7.2 m、9.0 m.关于汽车,下列说法中正确的有( )A.加速度大小为3.6 m/s2B.在这3 s内的平均速度大小为12.5 m/sC.在1.5 s末的瞬时速度大小为7.2 m/sD.在3 s末的瞬时速度大小为9.9 m/s1.汽车以某一初速度开始做匀加速直线运动,第1 s内行驶了1 m,第2 s内行驶了2 m,则汽车第3 s内的平均速度为( )A.2 m/s B.3 m/sC.4 m/s D.5 m/s2.(2025·揭阳期中)如图所示,小明同学在玩弹珠游戏时,将弹珠从A点以速度大小为1 m/s沿玻璃斜面向上弹出,弹珠先向上运动,再返回斜面底端B点时速度大小为2 m/s,且AB的距离为1 m.若弹珠从A点运动到B点的过程可以看成加速度不变的直线运动,规定沿斜面向上为正方向,那么下列物理量的等式中正确的是( )A.弹珠的初速度vA=1 m/s,末速度vB=2 m/sB.弹珠的速度变化量Δv=-3 m/sC.弹珠的位移s=1 mD.弹珠的平均速度=1.5 m/s3.物体做匀加速直线运动,相继经过两段距离为16 m的路程,第一段用时4 s,第二段用时2 s,则物体的加速度是( )A. m/s2 B. m/s2C. m/s2 D. m/s24.(多选)某汽车沿一直线运动,在t时间内通过的位移为L,在 处速度为v1,在 处速度为v2.下列说法中正确的是( )A.若汽车做匀加速运动,则v1>v2B.若汽车做匀加速运动,则v1<v2C.若汽车做匀减速运动,则v1<v2D.若汽车做匀减速运动,则v1>v25.一小球沿斜面匀加速滑下,依次经过A、B、C三点,已知AB=6 m,BC=10 m,小球经过AB和BC两段所用的时间均为2 s,则小球经过A、B、C三点时的速度大小分别是( )A.2 m/s,3 m/s,4 m/s B.2 m/s,4 m/s,6 m/sC.3 m/s,4 m/s,5 m/s D.3 m/s,5 m/s,7 m/s6.小物块以一定初速度滑上光滑固定斜面,沿斜面向上依次有A、B、C三点,物块在AB间的平均速度为BC间平均速度的4倍,到达C点时速度为0,则AC∶BC为( )A.3∶1 B.7∶1C.5∶1 D.9∶17.(多选)小明将一小球从固定斜面上的A点由静止释放,小球沿斜面匀加速下滑,下滑0.2 m经过B点,又下滑0.6 m经过C点,已知小球通过AB和BC两段所用的时间均为1 s,则下列说法中正确的是( )A.经过B点时的速度大小为0.2 m/sB.经过B点时的速度大小为0.4 m/sC.小球沿斜面下滑的加速度大小为0.4 m/s2D.小球沿斜面下滑的加速度大小为0.8 m/s28.(2025·惠州期末)某一列火车车头以72 km/h 的初速度进入某一座石桥后,立即做匀减速直线运动,经历了100 s后,该列火车车头即将下桥,此时速度为36 km/h,已知该石桥桥面水平,求:(1) 此过程火车的加速度大小.(2) 该石桥桥面的长度.(3) 此过程列车的平均速度大小.9.(2024·安徽蚌埠期末)如图所示,物体自O点由静止开始做匀加速直线运动,A、B、C、D是轨迹上的四点,测得AB=4 m,BC=6 m,CD=8 m,且物体通过AB、BC、CD所用时间相等,则O、A之间的距离为( )A. m B. mC. m D. m10.(多选)一个做匀加速直线运动的物体,先后经过A、B两点时的速度分别是3v和9v,经过AB的时间是t,则下列说法中正确的是( )A.经过A、B中点的速度是6vB.经过A、B中间时刻的速度是6vC.前 时间通过的位移比后 时间通过的位移少1.5vtD.前 位移所用时间是后 位移所用时间的3倍11.一辆汽车从静止开始做匀加速直线运动,已知途中先后经过相距27 m的A、B两点所用时间为2 s,汽车经过B点时的速度为15 m/s.求:(1) 汽车经过A点时的速度大小.(2) 汽车从出发点到A点的平均速度大小. 展开更多...... 收起↑ 资源列表 习题课1 匀变速直线运动的平均速度和位移差公式.docx 习题课1 匀变速直线运动的平均速度和位移差公式.pptx 习题课1 匀变速直线运动的平均速度和位移差公式学用.docx