广东省珠海市香洲区第九中学2025-2026学年七年级上学期第一次月考模拟数学试卷(含答案)

资源下载
  1. 二一教育资源

广东省珠海市香洲区第九中学2025-2026学年七年级上学期第一次月考模拟数学试卷(含答案)

资源简介

广东省珠海市香洲区第九中学2025-2026学年上学期第一次月考模拟七年级数学 试卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如图所示的是小青的微信钱包账单截图,若+6.80表示收入6.80元,则下列说法正确的是( )
7月2日10:20微信红包 +6.8; 7月3日10:22扫码付款——益民超市 -5.70
A.- 5.70表示余额为5.70元 B.- 5.70表示支出 - 5.70元
C.- 5.70表示支出5.70元 D.这两项的收支和为 + 12.30元
2.下列各对数中,互为相反数的是(  )
A.和2 B.6和 C.和 D.7和
3.中国古代著作《九章算术》在世界数学史上首次正式引人负数,如果盈利600元记作元,那么亏本400元记作( )
A. B. C. D.
4.在数轴上,点表示的数是1,若点到的距离是3,则点表示的数是( )
A.4 B. C.4或 D.3或
5.下列各式错误的是( )
A. B.
C. D.
6.下列说法中错误的是( )
A.绝对值等于它本身的数一定是正数 B.相反数和它本身相等的数是0
C.绝对值最小的有理数是0 D.互为相反数的两个数绝对值相同
7.在,,0.161161116…,0,中,有理数有(  )个.
A.1 B.2 C.3 D.4
8.A、B、C、D四位同学画的数轴其中正确的是( )
A. B.
C. D.
9.a,b两数在数轴上位置如图所示,a,b,,用“”连接,其中正确的是( )
A. B. C. D.
10.已知,且,则的值为( )
A. B. C.或 D.或
二、填空题
11.化简: , .
12.比较大小: ; (填“>”、“<”或“=”)
13.绝对值不大于2的所有整数为 .
14.定义:对于任何数,符号表示不大于的最大整数,例如:,,,则 .
15.计算: .
16.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则= .
三、解答题
17.把下列数按要求分类:,,,100,,,0,3.14,.
负数集合:{ };
负整数集合:{ };
正分数集合:{ }.
18.把下列各数在数轴上用点表示出来,并用“”把它们连接起来.,,,,.
19.计算:
(1);
(2).
20.某登山队5名队员以大本营为基底,向距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负.行程记录如下(单位:米),,,,,,,,,.
(1)它们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?
(2)登山时,5名队员在行进中全程均使用了氧气,每人每100米消耗氧气升.求共使用了多少升氧气?
21.数轴上点A,B表示的数分别是a,b,我们把点A,B之间的距离记作.
(1)若,,则___________;若,,则___________;
(2)若点A在点B的右边,则___________;若点A在点B的左边,则___________;若点A,B在数轴上运动时,则___________;
(3)数轴上表示数3的点到点A的距离可表示为___________;可表示为点B到表示数___________的点的距离;
(4)若,且A,B到表示数1的点的距离相等,求的值.
22.根据下面给出的数轴,解答下面的问题:
(1)请你根据图中、两点的位置,分别写出它们所表示的有理数:________;:________;
(2)观察数轴,与点的距离为的点表示的数是:________;
(3)若将数轴折叠,使得点与表示的点重合,则点与数________表示的点重合;
(4)若数轴上、两点之间的距离为在的左侧,且、两点经过(3)中折叠后互相重合,则、两点表示的数分别是::________,:________.
23.在一个由若干个排列整齐的数组成的正方形中,正方形中每一横行、一竖行及对角线的几个数之和都相等,称为“幻方”.图1幻方中每一横行、每一竖列以及两条对角线上的数的和都是15.

(1)图1中9个数之和是15的___________倍,15是9格的中心数5的___________倍;
(2)请在图2的幻方中将,,,,0,1,2,3,4这9个数分别填入;
(3)在图3、图4的幻方中,请填上合适的数.
24.阅读下面的材料,完成有关问题.
材料:
在学习绝对值时,老师教过我们绝对值的几何含义,如表示5,3在数轴上对应的两点之间的距离;,所以表示5,在数轴上对应的两点之间的距离;,所以表示5在数轴上对应的点到原点的距离.一般地,点A,B在数轴上分别表示有理数a,b,那么A,B之间的距离可表示为.
应用:
(1)点A,B,C在数轴上分别表示有理数,那么A到B的距离是 ,A到C的距离是 .(直接填最后结果);
(2)点A,B,C在数轴上分别表示有理数x,,1,那么A到B的距离与A到C的距离之和可表示为 .(用含绝对值的式子表示);
拓展:
(3)利用数轴探究:
①满足的x的所有值是 ;
②设,当时,m的值是不变的,而且是m的最小值,这个最小值是 ;
当x的值取在 的范围时,的最小值是 ;
当x的取值是 时,的最小值是 ;
(4)试求的最小值.
试卷第2页,共2页
试卷第1页,共1页
《广东省珠海市香洲区第九中学2025-2026学年上学期第一次月考模拟七年级数学 试卷》参考答案
一、单选题
题号 1 2 3 4 5 6 7 8 9 10
答案 C B A C C A C D C C
二、填空题
11. 2
解:;,
故答案为:;2.
12.
解:∵,,而,
∴;
∵,,而,
∴,
故答案为:;.
13.2,,1,,0
解:根据题意可得,
绝对值不大于2的所有整数有:2,,1,,0.
故答案为:2,,1,,0.
14.
解:
故答案为:.
15.9
解:

故答案为:9.
16.解:=51×50=2550.
故答案为2550.
三、解答题
17.解:,,,
负数集合::{、,,…};
负整数集合:{,,…};
正分数集合:{,…}.
18.解:如图所示,
∴.
19.(1)解:

(2)解:

20.(1)解:(米).
(米),
答:没有登上顶峰,他们距离顶峰40米.
(2)(米),
每人每100米消耗氧气0.5升,
(升)
答:他们共消耗升氧气.
21.(1)解:若,,则,若,,则;
故答案为:5,5;
(2)若点A在点B的右边,则,若点A在点B的左边,则,若点A,B在数轴上运动时,则;
故答案为:,,;
(3)数轴上表示数3的点到点A的距离可表示为,可表示为点B到表示数的点的距离;
故答案为:,;
(4)由题意,得:表示数1的点为的中点,则:,
∴;
故答案为:2.
22.(1)解:由数轴可知,点表示数,点表示数;
故答案为:,;
(2)解:点表示数,与点的距离为的点表示的数是:或;
故答案为:或;
(3)解:当点与表示的点重合,则点与数表示的点重合.
故答案为;
(4)解:由对称点为,且、两点之间的距离为(在的左侧)可知,
点、到的距离为,
∴点表示数,点表示数.
故答案为:,.
23.(1)解:9个数字的和为,
则,又,
∴9个数之和是15的3倍,15是9格的中心数5的3倍,
故答案为:3,3;
(2)解:如图所示(答案不唯一):

(3)解:如图所示(答案不唯一):

24.解:(1)根据题意可得A到B的距离是,
A到C的距离是;
故答案为:4,8;
(2)A到B的距离与A到C的距离之和可以表示为;
故答案为:;
(3)①∵,
当时,,
∴;
当时,,不成立;
当时,
∴.
综上:或;
故答案为:,5;
②,当时,,
故答案为:4;
式子表示数x到1和3的距离之和,
∴当时,式子有最小值为;
故答案为:,2;
表示数轴上表示x的点到表示1、3和5三个点的距离之和,要使距离之和最小,x在中间的那个数上,即,距离为1到5的距离;
故答案为:3,4;
(4)∵取最小值,
∴当x是50到51之间的任意数(包括50和51)时取到最小值,
令,则原式,
即的最小值为2500.
答案第1页,共2页
答案第1页,共2页

展开更多......

收起↑

资源预览