数学-黑龙江省哈尔滨市哈三中2025-2026学年度上学期高二学年期中考(PDF版,含答案)

资源下载
  1. 二一教育资源

数学-黑龙江省哈尔滨市哈三中2025-2026学年度上学期高二学年期中考(PDF版,含答案)

资源简介

哈三中 2025—2026 学年度上学期
高二学年期中考试 数学 试卷
考试说明:本试卷分第 I卷(选择题)和第 II卷(非选择题)两部分,满分 150 分,考
试时间 120分钟.
第Ⅰ卷 (选择题,共 58分)
一、单选题:本题共 8小题,每小题 5分,共 40分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.直线 y 3x 2的倾斜角为
π π 2π 5π
A. B. C. D.
6 3 3 6
2.已知直线 l1 :mx 2y 2 0与直线 l2 :5x m 3 y 5 0,若 l1//l2,则m
A. 5 B.2 C.2或 5 D.5
3.有一散点图如图所示,在 5个 x, y 数据中去掉D 3,10 后,下列说法正确的是
A.解释变量 x与响应变量 y的线性相关性变弱 B.方差变大
C.决定系数 R 2 变小 D.残差平方和变小
6
2 2 4.已知 ax 的展开式系数和为729,则a的值为
x
A. 1 B.0 C.1 D. 2
高二数学 第 1页 共 7页
5.哈尔滨国际马拉松赛项目分为全程马拉松、半程马拉松和迷你马拉松.甲、乙、丙等
5名马拉松爱好者均计划参加哈尔滨国际马拉松赛,若每人只参加一个竞赛项目,且
甲和乙均参加迷你马拉松,这 5名马拉松爱好者的竞赛项目涵盖了三个竞赛项目,则
不同的参赛方案有
A.6种 B.12种 C.24种 D.18种
6.已知随机变量 X的分布列如下:
X 2 0 1 2
1 1
P m n
6 3
若 E(X ) 0,则D(3X 1)
7
A. B.7 C.21 D.22
3
7.在平面直角坐标系 xOy中,P x0 , y0 为第一象限内的动点且在直线 x y 3 0上,则
x0 (x0 1)
2 y20 的最小值为
4
A. B.1 C.2 D.3
5
8.为研究不同性别学生对“deepseek”应用程序的了解情况,某学校进行了一次抽样调查,
分别抽取男生和女生各 50名作为样本,设事件 A "了解 deepseek",B “学生为女
生”,据统计 P(A B)
3
,P(B A)
2
,将样本的频率视为概率,现从全校的学生中
5 3
随机抽取 30名学生,设其中了解 deepseek的学生的人数为 X ,则当 P X k 取得
*
最大值时的 k k N 值为
A.14 B.13 C.12 D.11
高二数学 第 2页 共 7页
二、多选题:本题共 3小题,每小题 6分,共 18分.在每小题给出的选项中,有多项符
合题目要求,全部选对的得 6分,部分选对的得部分分,有选错的得 0分.
9.已知直线 l1: 4x 3y 2 0, l2: m 2 x m 1 y 5m 1 0(m R),则
A.直线 l2过定点 2,3 B.当m 10时, l1 //l2
C.当m 1时, l1 l2 D.当 l1 //l2时,两直线 l1, l2之间的距离为 2
10.下列说法正确的是
A.对于独立性检验,随机变量χ2的值越小,判定“两变量有关系”犯错误的概率越小
B.以模型 y cekx去拟合一组数据时,为了求出回归方程,设 z ln y,将其变换后得
到线性方程 z 3x 1,则 c,k的值分别是e,3
C.根据一组样本数据的散点图判断出两个变量线性相关,由最小二乘法求得其回归
直线方程为 y 0.4x a,若其中一个散点坐标为 ( a,5.4),则 a 9
D.将两个具有相关关系的变量 x,y的一组数据 (x1, y1), (x2 , y2 ), , (xn , yn )调整为
(x1, y1 3), (x2 , y2 3), (xn , yn 3),决定系数 R 2 不变
11.甲、乙两个口袋各装有 1个红球和 2个白球,这些球除颜色外完全相同,把从甲、
乙两个口袋中各任取一个球放入对方口袋中称为一次操作,重复 n次操作后,甲口
袋中恰有 0个红球,1个红球,2个红球分别记为事件 An, Bn,Cn,则
A.P(B ) 5 B.1 P(AC )
8
1 3 9 243
C. P(A1 | B2 )
2
D. P(A B 55
3 1 2
)
81
第Ⅱ卷 (非选择题,共 92分)
三、填空题:本大题共 3小题,每小题 5分,共 15分.将答案填在答题卡相应的位置上.
12.已知圆C : x2 y2 mx 1 0的面积为 π,则m .
13.已知随机变量 ~ N 3, 2 ( 0),若P( 1) 0.9,则P(3 5) .
高二数学 第 3页 共 7页
14.已知直线 kx y 1 k 0 k R 2 2恒过定点 A,圆C : x 1 y 4上的两点

P x1, y1 , Q x2 , y2 满足 PA AQ R ,则 2x1 y1 6 2x2 y2 6 的
最小值为 .
四、解答题:本题共 5小题, 共 77分. 解答应写出必要的文字说明、证明过程或演算步
骤.
15.已知 ABC的顶点 A 1,1 ,C 4,0 ,线段 AB的垂直平分线方程为 2x y 2 0.
(1) 求 ABC外接圆 E的标准方程;
(2) 若直线 l过点 P 2,0 ,且与圆 E相交截得弦长为8,求直线 l的方程.
16.某种产品 2020年到 2024年的年份代码 x与年利润 y(万元)的数据统计如下,
年份 2020年 2021年 2022年 2023年 2024年
xi 1 2 3 4 5
yi 6.4 5.5 5.0 4.8 3.8
(1)求 2020-2024年年份代码 xi 与 yi的样本相关系数(精确到 0.01);
(2)求回归直线方程并预测该产品 2026年的年利润.
n
xi x yi y
附:回归直线的斜率和截距的最小二乘法估计公式分别为:b i 1 n ,
xi x 2
i 1
a y b x.
n
xi x yi y
r i 1样本相关系数 n n , 36.4 6.
x x 2 y y 2i i
i 1 i 1
高二数学 第 4页 共 7页
17.某零件生产车间,对甲乙两台机器生产的零件进行检验,现从两台机器生产的零件
中抽查 100个零件,检验结果如下表所示:
一等品 非一等品 合计
甲机器 30 15
乙机器 45
合计
(1)完成列联表并依据小概率值 0.05的独立性检验,判断该车间生产的零件是否是一
等品与由哪台机器生产是否有关联;
(2)已知这批零件的内径 X(单位:mm)服从正态分布 N 200,36 ,若该车间又新购一台
机器,安装调试后,试生产了 5个零件,测量其内径(单位:mm)分别为:181,190,
198,204,213.如果你是该车间的负责人,以原两台机器生产性能为标准,试根据3
原则通过计算概率判断这台机器是否需要进一步调试?并说明你的理由.
2 n ad bc
2
附:参考公式: ,其中n a b c d.
a b c d a c b d
参考数据:
0.15 0.1 0.05 0.025 0.01 0.005 0.001
xa 2.072 2.706 3.841 5.024 6.635 7.879 10.828
若 X~N , 2 ,则 P X 0.6827, P X 2 0.9545,
P X 3 0.9973,0.99734 0.99.
高二数学 第 5页 共 7页
18.某自来水厂消毒系统原有 4台消毒装置,为确保饮用水微生物安全性,该自来水厂
进行了设备升级,又引进了 2台新型消毒装置. 据已有数据记录,原消毒系统对每个
大肠杆菌的灭活率均为 99.2%,新消毒系统对每个大肠杆菌的灭活率均为 99.8%,现
检验出一批未经消毒的水中大肠杆菌含量为 500个/升.
(1)若从该厂 6台消毒装置中随机选择 3台进行检测,记ξ为这 3台装置中新型装置
的台数,求ξ的分布列;
(2)经原消毒系统处理后,设一升水中大肠杆菌的个数为 X ,求 X 2的概率(结果
保留 3位小数)及 X的数学期望;
(3)经新消毒系统处理后,试用泊松分布近似计算,一升水中大肠杆菌个数不超出 2
个的概率(结果保留 3位小数).
附:①泊松(Poissor)分布,是一种统计与概率学里常见的离散型概率分布,是适合于
描述单位时间或单位面积内随机事件发生的次数的概率分布. 若随机变量ξ的分布列为
P k
k
e ,k 0,1,2, ,(其中 e为自然对数),则称随机变量ξ服从泊松分布.
k !
②设 ~ B n, p ,当 p 0.05且 n 20时,二项分布可近似看成泊松分布.即
k
P k Ckn pk 1 p
n k e ,其中 E .
k !
1
参考数据:0.992500 0.018,C5000.008 0.992
499 0.073 C2 0.0082 0.992498, 500 0.146,
e 2.72.
高二数学 第 6页 共 7页
19.组合恒等式是一类含有组合数的恒等式,其结构工整精美,是数学园林中的一组瑰
宝.其证明方法有很多,有构造计数模型法(算两次),构造函数法及数学归纳法等等.
请根据条件解决以下问题:
(1) m m 1 m 1求证:Cn Cn Cn 1 ;
n
(2)设 i n,求证: C j inC j C i n in2 ;
j i
(3) 0求证:Cm 3C
1
m 1 5C
2
m 2 (2n 1)C
n
m n (2m 1)C
m 2 C m 2m n 1 m n 2 ,
m,n N * .
(提示:证明过程中,可能会用到以下公式:an bn (a b)(an 1 an 2b an 3b2 bn 1),
a,b R,n N* ).
高二数学 第 7页 共 7页
哈三中 2025—2026 学年度上学期
高二学年期中考试 数学 答案
单选题
1-8 CADC BCDB
多选题
9AB 10BD 11ABD
填空题
12 2 2 13 0.4 14 1 7 5
解答题
2 2
15(1) (x 1) (y 4) 25
(2) x 2或7x 24y 14 0
16 (1) r 0.98
(2) y 0.59x 6.87 , 2.74 万元
100
17 (1) 2 3.030 3.841 ,无关
33
(2) P(Y 4) 0.013365是小概率事件,需要
18(1)
0 1 2
P 1 3 1
5 5 5
(2)0.237 , 4
(3)0.919
19 略
高二数学 第 1 页 共 1 页

展开更多......

收起↑

资源预览