四川省泸县第五中学2025-2026学年高一上学期11月期中考试数学试题(含答案)

资源下载
  1. 二一教育资源

四川省泸县第五中学2025-2026学年高一上学期11月期中考试数学试题(含答案)

资源简介

高2025级高一上学期半期考试
数学
注意事项:
答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上。
2.考生必须保持答题卡的整洁。
第I卷 选择题(58分)
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则( ▲ )
A. B.
C. D.
2.下列四组集合中表示同一集合的为( ▲ )
A.,
B.,
C.,
D.,
3.若,则( ▲ )
A. B.1 C.或1 D.或2
4.若,则满足条件的集合的个数有( ▲ )
A.7个 B.8个 C.15个 D.16个
5.已知集合,集合,则如图中的阴影部分表示( ▲ )
A. B. C. D.
6.某校利用课外活动时间开展了羽毛球、乒乓球、篮球培训课.甲班共52名学生,每人至少报了上述培训课中的一门.已知报羽毛球、乒乓球、篮球培训课的人数分别为30,25,20,其中既报了羽毛球培训课又报了乒乓球培训课的有13人,既报了羽毛球培训课又报了篮球培训课的有8人,既报了乒乓球培训课又报了篮球培训课的有5人,则同时报了羽毛球、乒乓球、篮球培训课的学生人数是( ▲ )
A.1 B.2 C.3 D.4
7.已知函数在上单调递增,则实数的取值范围是( ▲ )
A. B. C. D.
8.关于x的方程的两根分别在区间和内,则实数a的取值范围是( ▲ )
A. B.
C. D.
二、选择题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分,部分选对的得部分分,有选错的得0分。
9.已知,若q是的充分不必要条件,则q可以是( ▲ )
A. B. C. D.
10.已知关于的不等式的解集为或,则下列结论中,正确的结论是( ▲ )
A.
B.不等式的解集为
C.不等式的解集为
D..
11.设,称为高斯函数,其中表示不超过的最大整数,例如:,.若,则( ▲ )
A.
B.函数的值域为
C.若,则
D.点集所表示的平面区域的面积是4
第II卷 非选择题(92分)
三、填空题:本题共3小题,每小题5分,共15分.
12.命题“”的否定是 .
13.若两个正实数x,y满足,且恒成立,则实数m的取值范围是 .
14.函数是定义在上的奇函数,,当时,,不等式的解集为 .
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.(13分)
已知集合,集合.
(1)当时,求;
(2)若,求实数m的取值范围.
16.(15分)
已知
(1)求的值;
(2)若,求的值;
(3)解不等式.
17.(15分)
(1)若不等式的解集为,求的取值范围;
(2)解关于的不等式.
18.(17分)
某厂家拟定在2023年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用万元满足(k为常数).如果不举行促销活动,该产品的年销量只能是1万件.已知2023年生产该产品的固定投入将为10万元,每生产1万件,该产品需要再投入16万元(再投入费用不包含促销费用),厂家将每件产品的销售价格定为“平均每件产品的固定投入与再投入”的倍.
(1)求k的值;
(2)将2023年该产品的利润y(万元)表示为年促销费用m(万元)的函数;
(3)该厂家2023年约投入多少万元促销费用时,获得的利润最大,最大利润是多少?(,结果保留1位小数).
19.(17分)
已知定义在上的函数满足以下条件:
①对任意实数,恒有;
②当时,的值域为;
③.
(1)求,的值;
(2)时,求的值域,判断并证明在上的单调性;
(3)求不等式的解集.
第1页,共2页高2025级高一上学期半期考试
数学参考答案
一.单选题
题号 1 2 3 4 5 6 7 8 9 10
答案 C B A D B C C B AC ACD
题号 11
答案 ABD
二.多选题
题号 9 10 11
答案 AC ACD ABD
三.填空题
12. 13. 14.
15.解:(1)当时,,·················································2分
则.····································································5分
(2)因为,所以,···························································7分
当时,,解得;························································9分
当时,于是有,···············································12分
所以实数m的取值范围为.·······················································13分
16.解:(1)因为,,
所以,因为,················································2分
所以,···································································3分
(2)当时,,又,所以,······································5分
当时,,又,···············································6分
所以,故,····························································8分
综上,的值为或2 ·································································9分
(3)当时,,所以,················································11分
当时,,所以,··············································13分
综上,原不等式的解集为.·····················································15分
17.解:(1)根据题意,
当,即时,解集不是,不符合题意; ································2分
当,即时,因为的解集为R,·
所以的解集为R,·················································3分
所以,························································5分
即,
故时,或,所以.
故的取值范围为:···························································7分
(2)因为,
所以,····························································8分
当,即时,得,解集为;·······································9分
当,即时,,

解集为或;·····························································11分
当,即时,,

解集为.·································································13分
综上所述:当时,解集为;
当时,解集为;
当时,解集为或.····················································15分
18.解:(1)由已知,当时,,
∴,解得:,···································································3分
(2)由(1)知,


化简得:.··························································8分
(3),········································10分
∵,∴,即,则,··························13分
当且仅当即时等号成立,·············································15分
此时,,································16分
答:当促销费用约为3.7万元时,利润最大为19.7万元.·······································17分
19.解:(1)令,则,·······································2分
解得或.····································································3分
时,令
有,与题干信息不符,故.··································4分
令.······················································5分
(2)当时,,则
令,有·····························6分
化简得:,
因为,所以,
所以当时,的值域为,
所以当时,,

由于,则,则·······················9分
,故在上单调递增;···················································10分
(3)由于
,由于,···········································12分
.

化简得,·······························································14分
令,则,································································15分
解得:,即.··································································16分
又因为在上单调递减,所以.
所以不等式的解集.···············································17分
第1页,共2页

展开更多......

收起↑

资源列表