福建省厦门市同安区2025-2026学年七年级上学期11月期中数学试题(含答案)

资源下载
  1. 二一教育资源

福建省厦门市同安区2025-2026学年七年级上学期11月期中数学试题(含答案)

资源简介

2025-2026 学年第一学期数学初一期中练习参考答案
一、选择题
1~4 :ABCD;5~8 :DBCA .
二、填空题
9 .(1)-7; (2)2; (3)12; (4) ;
(5)7; (6) ; (7)-1; (8)5x2 ;
10 . 11 .<; 12 .3x + 2 (50 x) = 127 ;
13 .5 ; 14 .342; 15 .79; 16.②④.
三、解答题
(
0
)17 .(本题满分 6 分) 解:如图所示
数轴:原点、正方向、单位长度、直线,一个要素错扣 1 分,错三个及以上不得分;
······················································································································3 分
三个点标对并写出来,每个点得 1 分,共 3 分. ····························6 分
18 .(本题满分 16 分)
(1)解:原式 = 5 7 + 9 + 3 ····················································1 分
= 2 + 9 + 3 ·······················································2 分
= 7 + 3 ····························································3 分
= 10 ·······························································4 分
(2)解:原式 = ·······································1 分
= 12 × ···················································2 分
= 9 ······················································4 分
(3)解:原式 = 4× 5 ( 4) ····················································2 分
= 20 + 4 ···························································3 分
= 24 ·······························································4 分
(4)解法一:原式 = × 36 × 36+ ×36 ································1 分
= 8 30 + 27 ·············································3 分
= 5 ·························································4 分
解法二:原式 = ······································1 分
··················································3 分
= 5 ··································································4 分
19 .(本题满分 6 分)
解:(1)120 ×30 + 25x = (3600 + 25x) 元 ······································4 分
(2)当x = 100 时,
3600+ 25x = 3600+ 25×100 ··········································5 分
= 6100元··················································6 分
答:这批体育器材的总费用为6100 元.
20 .(本题满分 7 分)
解:原式 = 4ab + 2a2 3a2 + 9ab ···············································3 分
= 4ab + 9ab + 2a2 3a2
= 13ab a2 ·······························································5 分
当a = 2 ,b = 时,
原式 = 13 × 2 ·······················································6 分
= 17 ···········································································7 分
21 .(本题满分 7 分)
解:(1)2 (32 15 + 21 35 35 + 40) ········································2 分
= 6 (吨) ··································································3 分
答:周五的进出数为-6 吨,表示该仓库周五出库的货品数为 6 吨.
·····································································································4 分
(2)(32 + 15 + 2 1 + 35 + 6 + 35 + 40 )×45 ························6 分
= (32 +15 + 21+ 35 + 6 + 35 + 40)× 45
= 8280 (元) ····································································7 分
答:该仓库的老板这一周要付 8280 元的装卸费.
22.(本题满分 8 分)
解:(1)大长方形的长:m + 3n ···············································1 分
大长方形的面积:10(m + 3n) ···········································2 分
= 10m + 30n
(2)阴影 A 的长:m
阴影 A 的宽:10 2n ······················································3 分
阴影 B 的长:3n
阴影 B 的宽:10 m ·······················································4 分
阴影 A 的周长-阴影 B 的周长:2(m +10 2n)+ 2(3n +10 m) ··6 分
= 2m + 20 4n + 6n + 20 2m
= 2n + 40 8 分
所以,阴影 A 与阴影 B 的周长的和与 m 的取值无关.
23 .(本题满分 10 分)
解:(1)7 个数字的总和:6 + 7 +8 +9 +10 +11+12 = 63 ·····························1 分
所以关系为:63 = 7×9 ,7 个数字的总和是中间数 9 的 7 倍 ·············2 分
(2)①~⑨按顺序表示为: a 8, a 7, a 6,a 1,a, a +1,a + 6, a + 7, a +8 ·····4 分
S = (a 8) + (a 7) + (a 6) + (a 1) + a + (a +1) + (a + 6) + (a + 7) + (a + 8) ·········5 分
= a 8 + a 7 + a 6 + a 1+ a + a +1+ a + 6 + a + 7 + a +8
= a + a + a + a + a + a + a 8 +8 7 + 7 6 + 6 1+1
= 9a ····················································································7 分
(3)本小题按方案的多少给分,每画出一种给 2 分,能画出2 种给满分 3 分,形状相同
的方案视为同一种方案。有以下 2 种情况: ·······································10 分
①中心对称图形均可(展示部分答案)
图 1 :(a-7)+ (a-3)+ (a-2)+(a-1)+ a+ (a +1)+(a+2)+(a+3)+(a+7)=9a
(
5
退
1
格得到
4,
6

1
格得到
7
易得中间一行
5
个数和

5
a
,另外
4
个数和为:
a
-8
+a
-5
+a
+7
+a
+6
=4a
) (
2
格得到
3,6

2
格得到
8;
同时
18
退
1
格得
17,19

1
格得
20
a
-9
+a
-4
+a
+5
+a
+8
=4a
) (
中心对称图形
) (
24
.(
本题满分
10
分)
)②根据中心对称图形中选取偶数个格子,进退相同的格数也可。例如:
5 退 2 格得到 3, 5 退 6 进 2 格得到 8 易得中间一行 5 个数和 为 5a,另外 4 个数和为: a-9+a-4+a+7+a+6=4a
解:(1)A·················································································································2 分
(2)1 到 12 这 12 个数的和为 78,因此要凑出和为-4,则正数部分的和为 37,负数部分的 和为-41.
法一:12+11+10+4-9-8-7-6-5-3-2-1=-4 ············6 分
法二:1+2+4+5+7+8+10-3-6-9-11-12=-4 ············6 分
(3)法一:不能 ··································································7 分
利用乙同学思路:将这 2025 个数按奇偶性分成两组,(1,3,5,…,2025),(2,4,6,…,
2024)其中奇数组有 1013 个数,故无论在奇数组中的数如何添加正负号,奇数组各数之和一
定为奇数,偶数组有 1012 个数,同理,各数之和一定为偶数,奇数+偶数=奇数,而 2026 为
偶数,故不能做到. ······························································10 分
法二:不能 ····································································7 分
利用甲同学思路:要使得和为 2026,可以考虑利用最大数 2025,使得 2025+1=2026,即 剩余 2024 个数之和为 1,将这 2024 个数分成 1012 组:(1,2),(3,4),(5,6),…,(2023 , 2024),通过添加正负号让其中 a 组和为 1,其余(1012-a)组和为-1,则这 2024 个数的和 为a + ( 1).(1012 a) = 2a 1012 ,其中 2a 1012为偶数减去偶数其结果一定为偶数,而 1 为奇
数,故不能做到. ·································································10 分
(本道题主要考察学生逻辑推理能力,言之有理即可)
25 .(本题满分 11 分)
解:(1)法一:不相等的同号两数进行“ 田 ”运算,结果等于两数中较大数减去较小数;
相等的同号两数进行“ 田 ”运算,结果为 0; ··················································1 分
异号两数进行“ 田 ”运算,结果等于两数中较小数减去较大数; ·························2 分
一个数与 0 进行“田 ”运算,仍得这个数. ····················································3 分
法二:不相等的同号两数进行“ 田 ”运算,结果取正号,且结果的绝对值等于两数的绝对值
中较大者与较小者的差;相等的同号两数进行“ 田 ”运算,结果为 0; ·················1 分
异号两数进行“ 田 ”运算,结果取负号,且结果的绝对值等于两数的绝对值的和; ·2 分
一个数与 0 进行“田 ”运算,仍得这个数. ····················································3 分
(2)原式= ( 10 3) 田 ( 17)
= 13 田 ( 17) ···············································································5 分
= 17 13
= 4 ····························································································6 分
(3)成立,理由如下:
法一:①当 a ,b 同号时,若a = b ,则 a 田b = b 田a = 0 , 若a > b ,则 a 田b = a b ,b 田 a = a b ,故 a 田b = b 田a ,
若b > a ,则 a 田b = b a ,b 田a = b a ,故 a 田b = b 田a ; ·································8 分
②当 a ,b 异号时,若a > b ,则 a 田b = b a ,b 田a = b a ,故 a 田b = b 田a ,
若b > a ,则 a 田b = a b ,b 田 a = a b ,故 a 田b = b 田a ; ·································10 分
③当a = 0 时,a 田b = b ,b 田 a = b ,故 a 田b = b 田a ,
当b = 0 时,a 田b = a ,b 田 a = a ,故 a 田 b = b 田a ,
当a = b = 0 时,a 田b = 0 ,b 田 a = 0 ,故 a 田 b = b 田a ; ·····································12 分
综上所述,交换律a 田 b = b 田 a 成立.
法二:①当 a ,b 同号时,若a = b ,则 a 田b = b 田a = 0 ,
若a ≠ b ,a 田 b = a b ,b 田a = b a ,故 a 田 b = b 田a ; ··································8 分
②当 a ,b 异号时,a 田 b = a b ,b 田a = b a ,故 a 田 b = b 田a ; ·················10 分
③当a = 0 时,a 田b = b ,b 田 a = b ,故 a 田 b = b 田a , 当b = 0 时,a 田b = a ,b 田 a = a ,故 a 田 b = b 田a ,
当a = b = 0 时,a 田b = 0 ,b 田 a = 0 ,故 a 田 b = b 田a ; ·····································12 分
综上所述,交换律a 田 b = b 田 a 成立.2025-2026 学年第一学期初一期中练习
数 学
(满分 150 分;时长 120 分钟)
注意事项:1 .全卷三大题,25 小题,试卷共 6 页,另有答题卡.
2 .答案必须写在答题卡上,否则不能得分.
3 .可以直接使用2B 铅笔作图.
一、选择题(本大题共 8 小题,每小题 4 分,共 32 分.每小题都有四个选项,其中有且只有
一个选项符合题目要求. )
1 .2025 的相反数是 ( )
A .-2025 B . C .2025 D .-
2 .中国是最早采用正负数来表示相反意义的量的国家,如果上升 50 米,记作+50 米,那么 下降 100 米,记作 ( )
A .-10 米 B .-100 米 C .-90 米 D .-1000 米
3.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养 活约 3 亿 5 千万人,350000000 用科学记数法表示为 ( )
A .35×107 B .3.5×107 C .3.5×108 D .3.5×109
4 .有理数 a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是 ( )
a 0 b
第 4 题图
A .a + b > 0 B .a -b > 0 C .ab > 0 D .
5 .下列计算正确的是 ( )
A .4a - 3a = 1 B .-2(a -b ) = -2a -b
C .3a2b- ab2 = 2a2b D .2ab- 3ab = -ab
6 .下列各对相关联的量中,不成反比例关系的是 ( )
A .某赛场计划造雪26000m3 ,每天造雪量与造雪天数
B .计划用 100 元购买苹果和香蕉两种水果,购买苹果的金额与购买香蕉的金额
C .圆柱的体积为6m3 ,圆柱的底面积与高
D .社团共有 500 名学生,按各组人数相等的要求分组,组数与每组的人数
7 .下列说法中正确的是( )
A .2xy + x -1 的次数是 3 B .-2πx 的系数是-2
C .3x2y 与-4x2y 是同类项 D . 是单项式
8 .下面四个整式中,不能表示图中阴影部分面积的是( )
A .x2 + 5x B .x (x + 3) + 6
(

8
题图
)C .3 (x + 2) + x2 D .(x + 3)(x + 2)- 2x
二、填空题(本大题有 8 小题,第 9 小题 8 分,其它各小题每题 4 分,共 36 分)
9 .(1)-4 + (-3) = ; (2)-3 - (-5) = ;
(3)-2× (-6) = ; (4)9 ÷ (-2) = ;
(5)i-7i = ;
(7)-12024 = ; (8)2x2 + 3x2 = .
10 .-5 的倒数是 .
11 .比较大小:-5 -3 .(用“ > ”,“= ”或“ < ”连接)
12 .已知七年级某班 50 位学生种树 127 棵,男生每人种 3 棵树,女生每人种 2 棵树.设男生
有 x 人,则可列方程为 .
13 .若a2 - 2b = 1 ,则代数式2a2 - 4b + 3 的值是 .
14 .第十四届国际数学教育大会会徽的主题图案蕴含丰富的数学元素,
会徽下方是用中国古代的计数符号写的八进制数字(3745)8 .我们 第 14 题图
常用的数是十进制数,如4657 = 4 × 103 + 6× 102 + 5× 101 + 7× 100(规定当a ≠ 0 时,a0 = 1 ), 电子计算机中使用的是二进制,如(110)2 = 1 × 22 +1× 21 + 0× 20 ,换算成十进制数是 6 ,则 八进制数字(526)8 换算成十进制数是 .
15 .苯是一种有机化合物,是组成结构最简单的芳香烃,可以合成一系列衍生物.如图是某 小组用小木棒摆放的苯及其衍生物的结构式,第 1 个图形需要 9 根小木棒,第 2 个图形 需要 16 根小木棒,第 3 个图形需要 23 根小木棒……按此规律,第 11 个图形需要
根小木棒.
第 15 题图
数学试卷 第 2 页 共 6 页
16 .在数轴上,有理数 m ,n 的位置如图,将 m 与 n 的对应点间的距离四等分,这三个等分
点所对应的数依次为 a ,b ,c ,已知b- a = b + a ,则下列结论:① m < n ;② c > 0 ;
③ a +b > 0 ;④ m - n = 2 ( m + b ) ,其中正确的序号是 .
m a b c n
第 16 题图
三、解答题(本大题有 9 小题,共 82 分)
17 .(本题满分 6 分)
画出数轴,并在数轴上表示下列有理数:- ,-1 ,1.5 .
18 .(本题满分 16 分)
计算
2 × 5 -
19 .(本题满分 6 分)
学校为适应新中考要求,决定添置一批体育器材,学校准备订购一批某品牌篮球和跳绳, 篮球每个定价 120 元,跳绳每条定价 25 元.已知该学校要购买篮球 30 个,跳绳 x 条.
(1)求学校购买这批体育器材的总费用(用含 x 的代数式表示);
(2)当x =100 时,求这批体育器材的总费用.
20 .(本题满分 7 分)
先化简,再求值:2 (2ab + a2 )- 3(a2 - 3ab) ,其中a = -2 , .
21 .(本题满分 7 分)
同安区某仓库在一周的货品运输中,进出情况如下表所示(进库为正,出库为负,单位: 吨):表中星期五的进出数被墨水涂污了.
周一 周二 周三 周四 周五 周六 周天 合计
+32 -15 +21 -35 -35 +40 +2
(1)认真观察上表,请你算出周五的进出数,并说明该数字的实际意义;
(2)如果进库和出库的装卸费都是每吨 45 元,那么该仓库的老板这一周要付多少元的 装卸费?
22 .(本题满分 8 分)
已知有 5 个完全相同的长为 m ,宽为 n 的小长方形(如图 1),将这 5 个小长方形放置在
1 个宽为 10 的大长方形中(如图2).
m
(
A
) (
n
)B
10
第 22 题图 1 第 22 题图 2
(1)求大长方形的面积(用含 m ,n 的式子表示);
(2)请说明阴影 A 与阴影 B 的周长的和与 m 的取值无关.
23 .(本题满分 10 分)
如图是 2025 年 11 月的月历表:
第 23 题图 1 第 23 题图 2
(1)如图 1 阴影部分所示,小明选取其中的 7 个连续数字进行研究,请探求这 7 个数字 的总和与中间数 9 的关系,并说明理由;
(2)小明想探究非连续的9 个数字是否也存在规律.他框出了如图 2 阴影部分的方框, 并移动方框.若按日期的先后顺序给方框内的这 9 个数字依次编号①~⑨ , 设这 9 个数字的和为 S,第⑤个数字为 a .请探求 S 与 a 的关系,并说明理由;
(3)小明经过研究发现,除(2)中的方案外,仍可以在上面月历中选取非连续的9 个 数字,使结论与(2)中的一样,请你把选取的 9 个数字用2B 铅笔上色.(本小题 按方案的多少给分,画出一种给 2 分,能画出2 种给满分,形状相同的方案视为同 一种方案)
24 .(本题满分 10 分)
七年级一次数学活动中,甲乙两位同学对钟面问题展开探索研究,问题如下:“在钟面上 的 12 个数前面,恰当地添上正号或负号,使它们的和为 0 ,你能做到吗? ”
甲同学采用“配对法 ”,将这 12 个数分成 6 组:(1 ,2),(3 ,4),(5 ,6),(7 ,8),(9, 10),(11 ,12),通过添加正负号让其中三组中各数的和都为 1 ,另外三组中各数的和都 为-1;
乙同学采用“奇偶法 ”,将这 12 个数按奇偶性分成两组:(1 ,3 ,5 ,7 ,9 ,11),(2 ,4, 6 ,8 ,10 ,12),通过适当地添加正负号,先使所有的奇数的和为 0 ,再使所有的偶数的 和也为 0 ,这样就可以使这 12 个数的和为 0 了.
(1)甲,乙两位同学的办法中 ;
A .甲同学办法可行 B .乙同学办法可行
C .甲,乙同学办法均可行 D .甲,乙同学办法均不可行
(2)在钟面上的 12 个数前面,恰当地添上正号或负号,使它们的和为-4,你能做到吗? 如果能,请写出一种可行的添加方式,如果不能,请说明理由;
(3)在 1 ,2 ,3 ,4 ,… ,2024 ,2025 共 2025 个数前面,恰当地添上正号或负号,使它 们的和为 2026,你能做到吗?如果能,请写出一种可行的添加方式,如果不能,请 说明理由.
25 .(本题满分 12 分)
研究新定义的运算“ ”,并解答下列问题. 【观察运算】
① (+7) (+3) = 4 ;(+2) (+8) = 6 ;(-5) (-8) = 3 ;(-8) (-7) = 1;
② (+7) (-3) = -10 ;(+3) (-4) = -7 ;(-5) (+8) = -13 ;(-9) (+3) = -12 ;
③ 0 (+8) = 8 ;(+6) 0 = 6 ;0 (-3) = -3 ;(-2) 0 = -2 ;0 0 = 0 . 【归纳法则】
(1)归纳“ ”运算的运算法则; 【应用法则】
(2)计算: (-10) (+3) (-17); 【拓展延伸】
(3)探究交换律a b = b a (a ,b 为有理数)是否成立,并说明理由. 数学试卷 第 6 页 共 6 页

展开更多......

收起↑

资源列表