资源简介 微专题22 定点(线)、定值问题定点问题【例1】 (2025·山东聊城三模)已知椭圆C:+=1(a>b>0)的短轴长为2,离心率为.(1)求C的方程.(2)若A1,A2分别是C的左、右顶点,不与x轴垂直的动直线l与C交于P,Q两点(不同于A1,A2),且直线A1P的斜率等于直线A2Q的斜率的2倍,求证:直线l经过定点.[解] (1)由题意得2b=2 b=1 a2-c2=1,= c2=a2,解得a2=4,c2=3,故椭圆C的方程为+y2=1.(2)证明:设直线l的方程为y=kx+m,与椭圆方程+y2=1联立,消去y得(4k2+1)x2+8kmx+4m2-4=0,其中Δ=16(4k2+1-m2)>0 4k2+1>m2,设P(x1,y1),Q(x2,y2),则x1+x2=,x1x2=,由已知得= = =,再化简得(2k2+1)x1x2+(2km+2)(x1+x2)+2m2+4=0,代入得(2k2+1)+(2km+2)+2m2+4=0,整理得(2k-3m)(2k-m)=0,因为直线l不经过点A1(-2,0),所以2k-m≠0,即2k-3m=0 m=k,所以直线l的方程为y=kx+k=k,因此直线l经过定点.【规律方法】 动线过定点问题的两大类型及解法(1)动直线l过定点问题.设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),从而动直线过定点(-m,0).(2)动曲线C过定点问题.引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,可得出定点.【跟踪训练1】(2025·山西吕梁一模)已知椭圆C:+=1(a>b>0)的焦距为4,点A(,)在椭圆C上.(1)求椭圆C的方程.(2)若直线l交椭圆C于M,N两点,且线段MN的中点P的横坐标为-2,过P作直线l'⊥l.证明:直线l'恒过定点,并求出该定点的坐标.[解] (1)由点A(,)在椭圆C上,得+=1,由椭圆C的焦距为4,得a2-b2=8,解得a2=12,b2=4,所以椭圆C的方程为+=1.(2)证明:设P(-2,y0),将x=-2代入椭圆方程得y=±,由题知-≤y0≤.当y0≠0时,设M(x1,y1),N(x2,y2),显然x1≠x2,由两式相减得+=0,即·=-,由P为线段MN的中点,得·=-,直线l的斜率k==,由l'⊥l,得直线l'的方程为y-y0=-(x+2),即y=-,因此直线l'过定点.当y0=0时,直线l:x=-2,此时l'为x轴,过点,所以直线l'恒过定点.定直线问题【例2】 (2025·吉林长春质检)过抛物线E:y2=2px(p>0)的焦点F,且斜率为-1的直线l与抛物线E交于A,B两点,|AB|=8.(1)求抛物线E的方程;(2)过焦点F的直线l'交抛物线E于C,D两点,直线AC与BD的交点是否恒在一条直线上 若是,求出该直线的方程;否则,说明理由.[解] (1)由题意知,F,则直线l:y=-x+.设A(x1,y1),B(x2,y2),与抛物线方程联立得消去y并整理得x2-3px+=0,Δ1=(-3p)2-4×1×=8p2>0,所以x1+x2=3p,x1x2=.由抛物线的定义得|AB|=x1+x2+p=4p=8,解得p=2,所以抛物线E的方程为y2=4x.(2)由(1)可得y1y2=-4,F(1,0).由题意知,直线l'的斜率不为0,设直线l':x=my+1,C(x3,y3),D(x4,y4),与抛物线方程联立得消去x并整理得y2-4my-4=0,Δ2=(-4m)2-4×1×(-4)=16(m2+1)>0,所以y3y4=-4.直线AC:y-y3=(x-x3)=(x-x3)=(x-x3),即y=.①同理得直线BD:y=.②由①②消去y得=,即4(y1-y2+y3-y4)x=y1y2(y3-y4)+y3y4(y1-y2)=-4(y1-y2+y3-y4),解得x=-1,所以直线AC与直线BD的交点恒在直线x=-1上.【规律方法】 定直线问题的求解策略(1)联立方程消参.(2)挖掘图形的对称性,解出动点横坐标或纵坐标.(3)将横纵坐标分别用参数表示,再消参.(4)对方程变形解得定直线.【跟踪训练2】已知椭圆E:+=1(a>b>0)的短轴长为2,左、右顶点分别为C,D,过右焦点F(1,0)的直线l交椭圆E于A,B两点(不与C,D重合),直线AC与直线BD交于点T.(1)求椭圆E的方程;(2)求证:点T在定直线上.[解] (1)依题意,b=,半焦距c=1,则a==2,所以椭圆E的方程为+=1.(2)证明:显然直线AB不垂直于y轴,设直线AB:x=ty+1,由消去x并整理得(3t2+4)y2+6ty-9=0,Δ=36t2+36(3t2+4)=144(t2+1)>0,设A(x1,y1),B(x2,y2),则y1+y2=,y1y2=,且有ty1y2=(y1+y2),直线AC:y=(x+2),直线BD:y=(x-2),联立消去y得(x+2)=(x-2),即x=+,整理得[y2(x1+2)-y1(x2-2)]x=2y1(x2-2)+2y2(x1+2),即[y2(ty1+3)-y1(ty2-1)]x=2y1(ty2-1)+2y2(ty1+3),于是(3y2+y1)x=4ty1y2-2y1+6y2,而ty1y2=(y1+y2),则(3y2+y1)x=6(y1+y2)-2y1+6y2,因此x===4,所以点T在定直线x=4上.定值问题【例3】 (2025·甘肃白银模拟)已知抛物线C:y2=-2px(p>0)的焦点为F,点M(x0,2)在C上,且|MF|=2|OF|,其中O为坐标原点,过点A(0,1)的直线l与C相交.(1)求C的方程;(2)若l与C仅有一个公共点且斜率存在,求l的斜率;(3)若l与C交于M,N两点,记直线OM与直线ON的斜率分别为k1,k2,证明:k1+k2为定值,并求出该定值.[解] (1)由抛物线的定义可知|MF|=-x0+,又|MF|=2|OF|,则|MF|=p.即-x0=p,所以x0=-.又M在抛物线上,所以4=-2p·,且p>0,解得p=2.则C的方程为y2=-4x.(2)设直线l的斜率为k,则l:y=kx+1.联立得k2x2+(2k+4)x+1=0,当k=0时,l:y=1,符合题意;当k≠0时,则Δ=(2k+4)2-4k2=0,解得k=-1.综上,直线l的斜率为0或-1.(3)证明:由题得l的斜率存在且不为零.设l的方程为y=kx+1,M(x1,y1),N(x2,y2),联立可得k2x2+(2k+4)x+1=0,Δ=(2k+4)2-4k2=16k+16>0,即k>-1.可得x1+x2=-,x1x2=.故k1==,k2==.则k1+k2=+=2k+=-4,所以k1+k2为定值-4.【规律方法】 参数法解决圆锥曲线中定值问题的一般步骤【跟踪训练3】(2025·湖南长沙三模)已知动点M(x,y)与定点F(3,0)的距离与它到定直线l:x=的距离的比是常数.(1)求动点M的轨迹方程;(2)过上述轨迹上一点P作轨迹的切线与两直线y=x,y=-x分别交于A,B两点,证明:△AOB的面积是定值.(O为坐标原点)[解] (1)根据题意得=,则可得=,将上式两边平方,得(x-3)2+y2=2,整理得x2-6x+18+y2=2x2-6x+9,所以x2-y2=9,所以动点M的轨迹方程为-=1.(2)证明:设点P的坐标为(x0,y0),当切线的斜率不存在时,不妨取点P的坐标为(3,0),切线方程为x=3,与y=x联立得点A的坐标为(3,3),与y=-x联立得点B的坐标为(3,-3),由题意可知S△AOB=×3×|3-(-3)|=9;当切线的斜率存在时,设曲线在点P处的切线方程为y-y0=k(x-x0),与双曲线方程联立得消去y,可得x2-[k(x-x0)+y0]2=9,整理得(1-k2)x2+(2k2x0-2ky0)x-k2+2ky0x0--9=0,所以1-k2≠0且Δ=(2k2x0-2ky0)2-4(1-k2)(-k2+2ky0x0--9)=0,解得k=,代入y-y0=k(x-x0),得y0y-=x0x-,所以切线方程为x0x-y0y=9,与y=x联立得xA=,与y=-x联立得xB=,故S△AOB=|xA·xB|===9.综上,△AOB的面积是定值9.2/2微专题22 定点(线)、定值问题定点问题【例1】 (2025·山东聊城三模)已知椭圆C:+=1(a>b>0)的短轴长为2,离心率为.(1)求C的方程;[听课记录] _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)若A1,A2分别是C的左、右顶点,不与x轴垂直的动直线l与C交于P,Q两点(不同于A1,A2),且直线A1P的斜率等于直线A2Q的斜率的2倍,求证:直线l经过定点.[听课记录] _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【规律方法】 动线过定点问题的两大类型及解法(1)动直线l过定点问题.设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t=mk,得y=k(x+m),从而动直线过定点(-m,0).(2)动曲线C过定点问题.引入参变量建立曲线C的方程,再根据其对参变量恒成立,令其系数等于零,可得出定点.【跟踪训练1】 (2025·山西吕梁一模)已知椭圆C:+=1(a>b>0)的焦距为4,点A(,)在椭圆C上.(1)求椭圆C的方程.(2)若直线l交椭圆C于M,N两点,且线段MN的中点P的横坐标为-2,过P作直线l'⊥l.证明:直线l'恒过定点,并求出该定点的坐标._____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________定直线问题【例2】 (2025·吉林长春质检)过抛物线E:y2=2px(p>0)的焦点F,且斜率为-1的直线l与抛物线E交于A,B两点,|AB|=8.(1)求抛物线E的方程.(2)过焦点F的直线l'交抛物线E于C,D两点,直线AC与BD的交点是否恒在一条直线上 若是,求出该直线的方程;否则,说明理由.[听课记录] _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【规律方法】 定直线问题的求解策略(1)联立方程消参.(2)挖掘图形的对称性,解出动点横坐标或纵坐标.(3)将横纵坐标分别用参数表示,再消参.(4)对方程变形解得定直线.【跟踪训练2】已知椭圆E:+=1(a>b>0)的短轴长为2,左、右顶点分别为C,D,过右焦点F(1,0)的直线l交椭圆E于A,B两点(不与C,D重合),直线AC与直线BD交于点T.(1)求椭圆E的方程;(2)求证:点T在定直线上._________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________定值问题【例3】 (2025·甘肃白银模拟)已知抛物线C:y2=-2px(p>0)的焦点为F,点M(x0,2)在C上,且|MF|=2|OF|,其中O为坐标原点,过点A(0,1)的直线l与C相交.(1)求C的方程;(2)若l与C仅有一个公共点且斜率存在,求l的斜率;(3)若l与C交于M,N两点,记直线OM与直线ON的斜率分别为k1,k2,证明:k1+k2为定值,并求出该定值.[听课记录] _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【规律方法】 参数法解决圆锥曲线中定值问题的一般步骤【跟踪训练3】(2025·湖南长沙三模)已知动点M(x,y)与定点F(3,0)的距离与它到定直线l:x=的距离的比是常数.(1)求动点M的轨迹方程;(2)过上述轨迹上一点P作轨迹的切线与两直线y=x,y=-x分别交于A,B两点,证明:△AOB的面积是定值.(O为坐标原点)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2/2 展开更多...... 收起↑ 资源列表 微专题22 定点(线)、定值问题(原卷版).docx 微专题22 定点(线)、定值问题(解析版).docx