资源简介 微专题5 导数与不等式证明构造函数、利用最值证明不等式【例1】 已知函数f(x)=x2+x+aln(x+1),a∈R.(1)讨论f(x)的单调性;(2)证明:当a<-1时,a2+f(x)>1.[听课记录] _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【规律方法】 证明不等式f(x)>0(f(x)<0),可转化为证明f(x)min>0(f(x)max<0),解题的关键是求出函数f(x)的最小值(最大值).在求函数f(x)的最值时,主要有以下几种情形:(1)直接求得f(x)的最值,且最值是一个具体的实数.(2)求得f(x)的最值,且最值是一个含有参数的代数式,再说明该代数式的最值大于0(小于0).(3)通过隐零点求得f(x)的最值,再说明含有隐零点的最值表达式大于0(小于0).【跟踪训练1】已知函数f(x)=ln x-ax+1.(1)求f(x)的极值;(2)证明:ln x+x+1≤xex._____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________放缩后构造函数证明不等式【例2】 (2025·吉林长春模拟)已知函数f(x)=ln x-ax+1.(1)若f(x)≤0恒成立,求实数a的取值范围;(2)证明:当x≥1时,ex>x+1+2xln x.[听课记录] _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【规律方法】 放缩法证明不等式的两种基本方法(1)参数放缩:当给出参数取值范围来证明不等式恒成立时,可以把参数的取值范围放缩为常数.例如:已知a≥1,证明af(x)>0恒成立时,可以参数放缩得到af(x)≥f(x)>0,则只需要证明f(x)>0恒成立.(2)函数不等式放缩:在导数方法证明不等式中,最常见的是ln x和ex与其他代数式结合的问题,对于这类问题,可以考虑先对ln x与ex进行放缩,使问题简化,再构造函数进行证明.常见的放缩公式如下:①ex≥x+1(当且仅当x=0时取等号);②ln x≤x-1(当且仅当x=1时取等号).【跟踪训练2】(2025·安徽黄山模拟)已知函数f(x)=+ln(x-m).(1)若m=-2,求f(x)的单调区间;(2)若m≤0,证明:当x∈(0,+∞)时,f(x)≥1._________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________分拆转化函数证明不等式(凹凸翻转)【例3】 (2014·新课标Ⅰ卷)设函数f(x)=aexln x+,曲线y=f(x)在点(1, f(1))处的切线方程为y=e(x-1)+2.(1)求a,b;(2)证明:f(x)>1.[听课记录] _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【规律方法】(1)若利用导数求函数的最值比较复杂或无从下手,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目的.(2)在证明过程中,等价转化是关键,如g(x)min≥f(x)max成立,可得f(x)≤g(x)恒成立.(3)有时候不易变形为两个一般函数,也可以选取函数式中的一部分当作新的函数,对其进行分析,从而达到对整个函数性质的研究.【跟踪训练3】已知函数f(x)=xex+a,g(x)=xln x+a.(1)若函数f(x)的最小值与g(x)的最小值之和为-,求a的值;(2)若a=0,x>0,证明:f(x)>g'(x).____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________1/1微专题5 导数与不等式证明构造函数、利用最值证明不等式【例1】 已知函数f (x)=x2+x+a ln (x+1),a∈R.(1)讨论f (x)的单调性;(2)证明:当a<-1时,a2+f (x)>1.[解] (1) f ′(x)=x+1+=(x>-1),当a≥0时,f ′(x)>0在x∈(-1,+∞)上恒成立,故f (x)在(-1,+∞)上单调递增;当a<0时,令f ′(x)>0,得x>-1+;令f ′(x)<0,得-1故f (x)在上单调递增,在内单调递减.综上,当a≥0时,f (x)在(-1,+∞)上单调递增;当a<0时,f (x)在上单调递增,在内单调递减.(2)证明:由(1)知,当a<-1时,f (x)min=f =+a ln (-a),所以a2-1+f (x)≥a2-1+f (x)min=a2-1-(a+1)+a ln (-a).令g(a)=a2-1-(a+1)+a ln (-a)(a<-1),则g′(a)=2a+ln (-a).令h(a)=2a+ln (-a)(a<-1),则h′(a)=2+.因为a<-1,所以h′(a)>0,所以h(a)在(-∞,-1)上单调递增.又h(-1)<0,所以g′(a)=2a+ln (-a)<0,所以g(a)在(-∞,-1)上单调递减.因为g(-1)=0,所以g(a)>g(-1)=0,所以a2-1+f (x)≥a2-1+f (x)min>0,即当a<-1时,a2+f (x)>1.【规律方法】 证明不等式f (x)>0(f (x)<0),可转化为证明f (x)min>0(f (x)max<0),解题的关键是求出函数f (x)的最小值(最大值).在求函数f (x)的最值时,主要有以下几种情形:(1)直接求得f (x)的最值,且最值是一个具体的实数.(2)求得f (x)的最值,且最值是一个含有参数的代数式,再说明该代数式的最值大于0(小于0).(3)通过隐零点求得f (x)的最值,再说明含有隐零点的最值表达式大于0(小于0).【跟踪训练1】已知函数f (x)=ln x-ax+1.(1)求f (x)的极值;(2)证明:ln x+x+1≤xex.[解] (1)由题意得f (x)=ln x-ax+1的定义域为(0,+∞),则f ′(x)=-a=,当a≤0时,f ′(x)>0,f (x)在(0,+∞)上单调递增,无极值;当a>0时,令f ′(x)<0,则x>,令f ′(x)>0,则0即f (x)在内单调递增,在上单调递减,故x=为函数的极大值点,函数极大值为f =-ln a,无极小值.(2)证明:设g(x)=xex-ln x-x-1,x>0,则g′(x)=(x+1)ex--1,令h(x)=(x+1)ex--1,则h′(x)=(x+2)ex+>0(x>0),即h(x)在(0,+∞)上单调递增,h=-3<0,h(1)=2e-2>0,故 x0∈,使得h(x0)=0,即=1,当x∈(0,x0)时,h(x)<0,g(x)在(0,x0)内单调递减,当x∈(x0,+∞)时,h(x)>0,g(x)在(x0,+∞)上单调递增,故g(x)min=g(x0)=-x0-1=0,即g(x)≥0,即xex≥ln x+x+1,则ln x+x+1≤xex.放缩后构造函数证明不等式【例2】 (2025·吉林长春模拟)已知函数f (x)=ln x-ax+1.(1)若f (x)≤0恒成立,求实数a的取值范围;(2)证明:当x≥1时,ex>x+1+2x ln x.[解] (1)函数f (x)=ln x-ax+1的定义域为(0,+∞),不等式f (x)≤0,即ln x-ax+1≤0,所以a≥,令函数g(x)=,依题意,a≥g(x)对 x∈(0,+∞)恒成立,g′(x)=,当00;当x>1时,g′(x)<0,函数g(x)在(0,1)内单调递增,在(1,+∞)上单调递减,g(x)max=g(1)=1,则a≥1,所以实数a的取值范围是[1,+∞).(2)证明:由(1)知,当x≥1时,不等式ln x≤x-1恒成立,则2x ln x≤2x(x-1)恒成立,因此x+1+2x ln x≤x+1+2x(x-1)=2x2-x+1,令函数h(x)=,x≥1,求导得h′(x)==-,当1≤x<2时,h′(x)>0;当x>2时,h′(x)<0,函数h(x)在[1,2)内单调递增,在(2,+∞)上单调递减,h(x)≤h(2)=<1,所以当x≥1时,ex>2x2-1+1≥x+1+2x ln x.【规律方法】 放缩法证明不等式的两种基本方法(1)参数放缩:当给出参数取值范围来证明不等式恒成立时,可以把参数的取值范围放缩为常数.例如:已知a≥1,证明af (x)>0恒成立时,可以参数放缩得到af (x)≥f (x)>0,则只需要证明f (x)>0恒成立.(2)函数不等式放缩:在导数方法证明不等式中,最常见的是ln x和ex与其他代数式结合的问题,对于这类问题,可以考虑先对ln x与ex进行放缩,使问题简化,再构造函数进行证明.常见的放缩公式如下:①ex≥x+1(当且仅当x=0时取等号);②ln x≤x-1(当且仅当x=1时取等号).【跟踪训练2】(2025·安徽黄山模拟)已知函数f (x)=+ln (x-m).(1)若m=-2,求f (x)的单调区间;(2)若m≤0,证明:当x∈(0,+∞)时,f (x)≥1.[解] (1)若m=-2,则f (x)=+ln (x+2),其定义域为(-2,0)∪(0,+∞),f ′(x)=,令f ′(x)>0,解得-22,令f ′(x)<0,解得-1所以f (x)在(-2,-1),(2,+∞)上单调递增,在(-1,0),(0,2)上单调递减.(2)证明:当m≤0,x∈(0,+∞)时,ln (x-m)≥ln x,则有f (x)=+ln (x-m)≥+ln x,故只需证明当m=0时,f (x)≥1,当m=0时,f ′(x)=(x∈(0,+∞)),令f ′(x)>0,解得x>1,令f ′(x)<0,解得0所以f (x)在区间(0,1)内单调递减,在区间(1,+∞)上单调递增,当x=1时,f (x)取得最小值,所以f (x)≥f (1)=1,综上,当x∈(0,+∞)时,f (x)≥1.分拆转化函数证明不等式(凹凸翻转)【例3】 (2014·新课标Ⅰ卷)设函数f (x)=aex ln x+,曲线y=f (x)在点(1, f (1))处的切线方程为y=e(x-1)+2.(1)求a,b;(2)证明:f (x)>1.[解] (1)函数f (x)的定义域为(0,+∞),f ′(x)=aex ln x+ex-ex-1+ex-1.由题意可得f (1)=2,f ′(1)=e.故a=1,b=2.(2)证明:由(1)知,f (x)=ex ln x+ex-1,从而f (x)>1等价于x ln x>xe-x-.设函数g(x)=x ln x,则g′(x)=1+ln x.所以当x∈时,g′(x)<0;当x∈时,g′(x)>0.故g(x)在内单调递减,在上单调递增,从而g(x)在(0,+∞)上的最小值为g=-.设函数h(x)=xe-x-,则h′(x)=e-x(1-x).所以当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0.故h(x)在(0,1)内单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=-.综上,当x>0时,g(x)>h(x),即f (x)>1.【规律方法】(1)若利用导数求函数的最值比较复杂或无从下手,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目的.(2)在证明过程中,等价转化是关键,如g(x)min≥f (x)max成立,可得f (x)≤g(x)恒成立.(3)有时候不易变形为两个一般函数,也可以选取函数式中的一部分当作新的函数,对其进行分析,从而达到对整个函数性质的研究.【跟踪训练3】已知函数f (x)=xex+a,g(x)=x ln x+a.(1)若函数f (x)的最小值与g(x)的最小值之和为-,求a的值;(2)若a=0,x>0,证明:f (x)>g′(x).[解] (1)因为f (x)=xex+a,所以f ′(x)=(1+x)ex.令f ′(x)=0,解得x=-1.所以当x∈(-∞,-1)时,f ′(x)<0,f (x)单调递减;当x∈(-1,+∞)时,f ′(x)>0,f (x)单调递增.所以f (x)min=f (-1)=-+a.因为g(x)=x ln x+a,x>0,所以g′(x)=ln x+1.令g′(x)=0,解得x=.所以当x∈时,g′(x)<0,g(x)单调递减;当x∈时,g′(x)>0,g(x)单调递增,所以g(x)min=g=-+a.由题意可得-+a=-,解得a=-.(2)证明:法一(凹凸翻转):要证f (x)>g′(x),即证xex>ln x+1,即证>.令h(x)=,x>0,φ(x)=,x>0.易得h′(x)=,则令h′(x)<0,得00,得x>1.所以h(x)在(0,1)内单调递减,在(1,+∞)上单调递增.所以h(x)≥h(1)=e.易得φ′(x)==.令φ′(x)>0,得;令φ′(x)<0,得.所以φ(x)在内单调递增,在上单调递减,所以φ(x)≤=所以h(x)>φ(x),故f (x)>g′(x).法二(先放缩再证明):令φ(x)=ex-x-1,所以φ′(x)=ex-1,当x∈(-∞,0)时,φ′(x)<0,当x∈(0,+∞)时,φ′(x)>0,所以φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以φ(x)≥φ(0)=0,即ex≥x+1,当且仅当x=0时等号成立.当x>0时,xex>x(x+1),要证f (x)>g′(x),即证xex>ln x+1,若x(x+1)>ln x+1,即x(x+1)-ln x-1>0,则f (x)>g′(x).令h(x)=x(x+1)-ln x-1,x>0,所以h′(x)=2x+1-=,当x∈时,h′(x)<0,当x∈时,h′(x)>0,所以h(x)在内单调递减,在上单调递增,所以h(x)≥h=-ln =ln 2->0,所以x(x+1)-ln x-1>0,即证得f (x)>g′(x)成立.1/1 展开更多...... 收起↑ 资源列表 微专题5 导数与不等式证明(原卷版).docx 微专题5 导数与不等式证明(解析版).docx