高考数学二轮专题复习 微专题6 恒成立问题与能成立问题 学案(含解析)

资源下载
  1. 二一教育资源

高考数学二轮专题复习 微专题6 恒成立问题与能成立问题 学案(含解析)

资源简介

微专题6 恒成立问题与能成立问题
利用导数研究恒成立问题
考向1 分离法求参数的取值范围
【例1】 (2025·辽宁盘锦三模)已知函数f(x)=x2-3x+λln x.
(1)当0<λ<时,讨论f(x)的单调性;
[听课记录] _________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
(2)若 x∈[2,4],f(x)≤0,求实数λ的取值范围.
[听课记录] _________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
【规律方法】 分离参数法来确定不等式f(x,λ)≥0(x∈D,λ为实数)恒成立问题中参数取值范围的基本步骤
(1)将参数与变量分离,化为f1(λ)≥f2(x)或f1(λ)≤f2(x)的形式.
(2)求f2(x)在x∈D时的最大值或最小值.
(3)解不等式f1(λ)≥f2(x)max或f1(λ)≤f2(x)min,得到λ的取值范围.
【跟踪训练1】
(2025·安徽合肥模拟)已知函数f(x)=aex-ln x-1.
(1)设x=2是f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若f(x)≥0,求实数a的取值范围.
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
考向2 分类等价转化法求参数的取值范围
【例2】 (2024·全国甲卷)已知函数f(x)=(1-ax)ln(1+x)-x.
(1)当a=-2时,求f(x)的极值;
(2)当x≥0时,f(x)≥0恒成立,求a的取值范围.
[听课记录] _________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
【规律方法】
(1)对于不等式恒成立问题,若不易分离参数或参数分离后对应函数难以求最值,解题时常用参数表示极值点,进而用参数表示出函数的最值,最后解不等式得到参数的取值范围,体现了转化思想.
(2)解题过程中,参数的不同取值范围对函数的最值有影响时,应注意对参数的不同取值范围进行分类讨论.
【跟踪训练2】
已知函数f(x)=.
(1)若曲线y=f(x)在点(a,f(a))处的切线过点(4,2),求a的值;
(2)若f(x)≤aex-1恒成立,求a的取值范围.
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
_____________________________________________________________________
利用导数研究能成立问题
【例3】 (2025·甘肃白银模拟)已知函数f(x)=(mx-2)ex-1,且f(x)在x=0处取得极值.
(1)求m的值及f(x)的单调区间;
(2)若存在x∈R,使得f(x)≤2ex-a-1,求实数a的取值范围.
[听课记录] _________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
【规律方法】 
1.含参数的不等式能成立(存在性)问题的转化方法
(1)若a>f(x)在x∈D上能成立,则a>f(x)min.
(2)若a2.不等式有解(能成立)问题的解题关键点
【跟踪训练3】
(2025·山东菏泽一模)已知函数f(x)=aex-x.
(1)求f(x)的单调区间;
(2)当a>0时,存在x∈[-1,1],使得|f(x)|≥2,求a的取值范围.
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
1/1微专题6 恒成立问题与能成立问题
利用导数研究恒成立问题
考向1 分离法求参数的取值范围
【例1】 (2025·辽宁盘锦三模)已知函数f (x)=x2-3x+λln x.
(1)当0<λ<时,讨论f (x)的单调性;
(2)若 x∈[2,4],f (x)≤0,求实数λ的取值范围.
[解] (1)依题意,x∈(0,+∞),
f ′(x)=2x-3+=,
由2x2-3x+λ=0,
得Δ=9-8λ.
当0<λ<时,Δ>0.
令f ′(x)=0,得x1=,
x2=,
故当0<λ<时,0故当x∈(0,x1)时,f ′(x)>0,当x∈(x1,x2)时,f ′(x)<0,当x∈(x2,+∞)时,f ′(x)>0,
所以f (x)在内单调递增;
在内单调递减;
在上单调递增.
(2)令x2-3x+λln x≤0,因为x∈[2,4],所以ln x>0,故λ≤,
令g(x)=,
则g′(x)=,
令h(x)=(3-2x)ln x-3+x,则h′(x)=-2ln x+-1,
易知h′(x)为在[2,4]上单调递减,则在[2,4]上,h′(x)≤h′(2)=-2ln 2<0,
故h(x)在[2,4]上单调递减,
则h(x)≤h(2)=-ln 2-1<0,
故g′(x)<0,g(x)在[2,4]上单调递减,
故λ≤g(x)min=g(4)=-,
故实数λ的取值范围为.
【规律方法】 分离参数法来确定不等式f (x,λ)≥0(x∈D,λ为实数)恒成立问题中参数取值范围的基本步骤
(1)将参数与变量分离,化为f 1(λ)≥f 2(x)或f 1(λ)≤f 2(x)的形式.
(2)求f 2(x)在x∈D时的最大值或最小值.
(3)解不等式f 1(λ)≥f 2(x)max或f 1(λ)≤f 2(x)min,得到λ的取值范围.
【跟踪训练1】
(2025·安徽合肥模拟)已知函数f (x)=aex-ln x-1.
(1)设x=2是f (x)的极值点,求曲线y=f (x)在点(1,f (1))处的切线方程;
(2)若f (x)≥0,求实数a的取值范围.
[解] (1)函数f (x)=aex-ln x-1的定义域为(0,+∞),求导得f ′(x)=aex-,
由x=2是f (x)的极值点,得f ′(2)=ae2-=0,解得a=,
f (x)=ex-ln x-1,f ′(x)=ex-,函数f ′(x)在(0,+∞)上单调递增,
当02时,f ′(x)>0,则x=2是f (x)的极小值点,a=,
f (1)=-1,f ′(1)=-1,
所以曲线f (x)在点(1,f (1))处的切线方程为y=x.
(2)不等式f (x)=aex-ln x-1≥0,
即a≥,
设g(x)=,求导得g′(x)=,设h(x)=-ln x-1,函数h(x)在(0,+∞)上单调递减,且h(1)=0,
则当00,即g′(x)>0;当x>1时,h(x)<0,即g′(x)<0,
函数g(x)在(0,1)内单调递增,在(1,+∞)上单调递减,g(x)max=g(1)=,因此a≥,
所以实数a的取值范围是.
考向2 分类等价转化法求参数的取值范围
【例2】 (2024·全国甲卷)已知函数f (x)=(1-ax)ln (1+x)-x.
(1)当a=-2时,求f (x)的极值;
(2)当x≥0时,f (x)≥0恒成立,求a的取值范围.
[解] (1)当a=-2时,f (x)=(1+2x)ln (1+x)-x,x∈(-1,+∞),
故f ′(x)=2ln(1+x)+-1=2ln (1+x)-+1,
因为y=2ln (1+x),y=-+1在(-1,+∞)上单调递增,
故f ′(x)在(-1,+∞)上单调递增,而f ′(0)=0,
故当-10时,f ′(x)>0,
故f (x)在x=0处取极小值且极小值为f (0)=0,无极大值.
(2) f ′(x)=-a ln (1+x)+-1=-a ln (1+x)-,x>-1,
设s(x)=-a ln (1+x)-,
则s′(x)==-=-,
当a≤-时,若x≥0,则s′(x)>0,故s(x)在[0,+∞)上单调递增,
故s(x)≥s(0)=0,即f ′(x)≥0,
所以f (x)在[0,+∞)上单调递增,
故f (x)≥f (0)=0.
当-故s(x)在内单调递减,
故在内,s(x)即在内f ′(x)<0,即f (x)单调递减,
故在内f (x)当a≥0时,此时s′(x)<0在[0,+∞)上恒成立,
同理可得在[0,+∞)上f (x)≤f (0)=0恒成立,不符合题意,舍去.
综上,a的取值范围为.
【规律方法】
(1)对于不等式恒成立问题,若不易分离参数或参数分离后对应函数难以求最值,解题时常用参数表示极值点,进而用参数表示出函数的最值,最后解不等式得到参数的取值范围,体现了转化思想.
(2)解题过程中,参数的不同取值范围对函数的最值有影响时,应注意对参数的不同取值范围进行分类讨论.
【跟踪训练2】
已知函数f (x)=.
(1)若曲线y=f (x)在点(a,f (a))处的切线过点(4,2),求a的值;
(2)若f (x)≤aex-1恒成立,求a的取值范围.
[解] (1)由函数f (x)=,可得f ′(x)=,则f (a)=,且f ′(a)=,
曲线y=f (x)在点(a,f (a))处的切线方程为y-=(x-a).
因为该直线过点(4,2),
所以2-=(4-a),解得a=4.
(2)因为f (x)=≤aex-1,
所以a>0且x>,
两边平方可得a2e2x-2≥2x-a,
令函数g(x)=a2e2x-2-2x+a,
可得g′(x)=2(a2e2x-2-1),
令函数h(x)=a2e2x-2-1,
可得h′(x)=2a2e2x-2>0,
所以h(x)在上单调递增,
令g′(x)=2(a2e2x-2-1)=0,
可得x=1-ln a.
下面比较1-ln a与的大小:
令函数u(a)=1-ln a-,u′(a)=-<0,u(a)在(0,+∞)上单调递减,
因为u(1)=>0,u(2)=-ln 2<0,
所以存在a0∈(1,2),使得当a∈(0,a0)时,u(a)>0,即1-ln a>,
若a∈[a0,+∞),可得u(a)≤0,即1-ln a≤.
若a∈(0,a0),当x∈时,h(x)<0,即g′(x)<0;当x∈时,h(x)>0,即g′(x)>0,
所以g(x)在内单调递减,在(1-ln a,+∞)上单调递增,且g(x)min=g(1-ln a)=a2e-2ln a-2(1-ln a)+a=2ln a+a-1,
令函数v(a)=2ln a+a-1,v′(a)=+1>0,所以v(a)在(0,+∞)上单调递增,
由题意可得g(x)min=2ln a+a-1≥0,
又因为v(1)=0,
所以1≤a当a∈[a0,+∞)时,g(x)min=g>0,符合题意.
综上可得,实数a的取值范围为[1,+∞).
利用导数研究能成立问题
【例3】 (2025·甘肃白银模拟)已知函数f (x)=(mx-2)ex-1,且f (x)在x=0处取得极值.
(1)求m的值及f (x)的单调区间;
(2)若存在x∈R,使得f (x)≤2ex-a-1,求实数a的取值范围.
[解] (1)由题设f ′(x)=(mx-2+m)ex,
且f ′(0)=m-2=0,即m=2,
所以f ′(x)=2xex,当x<0时,f ′(x)<0,当x>0时,f ′(x)>0,
所以f (x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,即x=0处取得极小值,满足题意.
综上,m=2,f (x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
(2)由题设(2x-2)ex-1≤2ex-a-1,即a≤2(xe+ex-xex)在x∈R上能成立,
令g(x)=xe+ex-xex,则g′(x)=e-xex,
令h(x)=g′(x),则h′(x)=-(x+1)ex,
当x<-1时,h′(x)>0,即h(x)=g′(x)在(-∞,-1)上单调递增,
当x>-1时,h′(x)<0,即h(x)=g′(x)在(-1,+∞)上单调递减,
由x→-∞时g′(x)→e,g′(1)=0,
当x<1时,g′(x)>0,g(x)在(-∞,1)上单调递增,
当x>1时,g′(x)<0,g(x)在(1,+∞)上单调递减,
所以g(x)≤g(1)=e,则a≤2e.
所以实数a的取值范围为(-∞,2e].
【规律方法】 
1.含参数的不等式能成立(存在性)问题的转化方法
(1)若a>f (x)在x∈D上能成立,则a>f (x)min.
(2)若a2.不等式有解(能成立)问题的解题关键点
【跟踪训练3】
(2025·山东菏泽一模)已知函数f (x)=aex-x.
(1)求f (x)的单调区间;
(2)当a>0时,存在x∈[-1,1],使得|f (x)|≥2,求a的取值范围.
[解] (1) f ′(x)=aex-1,
当a≤0时,f ′(x)<0恒成立,此时f (x)在(-∞,+∞)上单调递减;
当a>0时,令f ′(x)=0,则x=-ln a,
当x∈(-∞,-ln a)时,f ′(x)<0,此时f (x)在(-∞,-ln a)上单调递减,
当x∈(-ln a,+∞)时,f ′(x)>0,此时f (x)在(-ln a,+∞)上单调递增.
综上所述,当a≤0时,f (x)在(-∞,+∞)上单调递减,无增区间;
当a>0时,f (x)在(-∞,-ln a)上单调递减,在(-ln a,+∞)上单调递增.
(2)因为存在x∈[-1,1],使得|f (x)|≥2,只需f (x)max≥2或f (x)min≤-2,
因为a>0,所以f (x)=aex-x>-x≥-1,
所以只需f (x)max≥2,由(1)知f (x)max为f (-1)与f (1)中的较大者,
所以f (1)=ae-1≥2或f (-1)=ae-1+1≥2,解得a≥或a≥e,
所以a≥.
综上所述,a的取值范围为.
1/1

展开更多......

收起↑

资源列表