资源简介 微专题7 零点问题判断函数零点的个数【例1】 (2025·安徽淮北二模)已知函数f (x)=x2-2x+aln x.(1)若a=1,求曲线y=f (x)在x=1处的切线方程;(2)求证:当a≥0时,f (x)有且仅有一个零点.[解] (1)若a=1,则f (x)=-2x+ln x,f ′(x)=x-2+,所以f ′(1)=0,f (1)=-,函数f (x)在x=1处的切线方程为y=-.(2)证明:f (x)的定义域为(0,+∞),f ′(x)=x-2+=,当a=0时,f (x)=-2x,f (x)有且仅有一个零点4;当a≥1时,f ′(x)≥0,函数f (x)单调递增,由f (1)<0,f (4)=a ln 4>0,知f (x)存在唯一零点x0∈(1,4);当0当x∈(0,x1)时,f ′(x)>0,函数f (x)单调递增;当x∈(x1,x2)时,f ′(x)<0,函数f (x)单调递减;当x∈(x2,+∞)时,f ′(x)>0,函数f (x)单调递增;当x∈(0,1]时,-2x<0,a ln x≤0,所以f (x)<0,函数f (x)无零点;因为当x∈(1,x2)时,f (x)单调递减,当x∈(x2,+∞)时,f (x)单调递增,且f (x2)0,所以f (x)存在唯一零点x0∈(1,4).综上所述,当a≥0时,f (x)有且仅有一个零点.【规律方法】 判断函数零点个数的方法(1)利用函数单调性和函数零点存在定理①讨论函数的单调性,确定函数的单调区间.②在每个单调区间上,利用函数零点存在定理判断零点的个数.③注意区间端点的选取技巧.④含参数时注意分类讨论.(2)利用数形结合函数的零点个数等于函数图象与x轴的交点个数,因此借助数形结合思想,可通过函数图象判断函数的零点个数.①利用导数研究函数f (x)的单调性、极值及最值情况,并结合函数值的正负情况及变化趋势,作出函数f (x)的大致图象,然后根据图象判断零点个数.②若函数f (x)的图象不易直接作出,可根据函数与方程思想将函数零点转化为方程的根,再将方程进行变形,转化为两个函数的图象交点问题,从而判断函数的零点个数.【跟踪训练1】已知函数f (x)=ex-sin x-1.(1)讨论函数f (x)在区间(0,+∞)上的单调性;(2)证明:函数f (x)在区间(-π,0]内有且仅有两个零点.[解] (1)函数f (x)=ex-sin x-1,当x>0时,f ′(x)=ex-cos x>1-cos x≥0,所以f (x)在(0,+∞)上单调递增.(2)证明:由(1)知,f ′(x)=ex-cos x,当x∈时,f ′(x)>0,函数f (x)在内单调递增,f (-π)=e-π-1<0,f =>0,因此函数f (x)在内有唯一零点;当x∈时,令g(x)=ex-cos x,求导得g′(x)=ex+sin x,g′(x)在内单调递增,g′=-1<0, g′(0)=1>0,则存在x0∈,使得 g′(x0)=0,当x∈时,g′(x)<0,函数g(x),即f ′(x)单调递减,当x∈(x0,0)时,g′(x)>0,函数g(x),即f ′(x)单调递增,又f ′=>0,f ′(x0)则存在x1∈,使得f ′(x1)=0,当x∈时,f ′(x)>0,函数f (x)单调递增,当x∈(x1,0)时,f ′(x)<0,函数f (x)单调递减,而f =>0,f (0)=0,因此函数f (x)在内有唯一零点,所以函数f (x)在区间(-π,0]内有且仅有两个零点.根据零点求参数的取值范围【例2】 (2025·重庆九龙坡三模)已知函数f (x)=-a ln x-x2+(a+1)x,a∈R.(1)当a=2时,求函数f (x)的极值;(2)设g(x)=f (x)+(a-1)ln x+x2有两个不同的零点x1,x2,求a的取值范围.[解] (1)当a=2时,f (x)=-2ln x-x2+3x,x∈(0,+∞),f ′(x)=-x+3==,由f ′(x)>0,得12,所以当x∈(1,2)时,f (x)单调递增,当x∈(0,1)和x∈(2,+∞)时,f (x)单调递减,所以f (x)的极小值为f (1)=,f (x)的极大值为f (2)=4-2ln 2.(2)g(x)=f (x)+(a-1)ln x+x2=-ln x+(a+1)x,x∈(0,+∞),令g(x)=-ln x+(a+1)x=0,则a+1=,记h(x)=,x∈(0,+∞),则h′(x)=,当x>e时,h′(x)=<0,当00,所以h(x)在(0,e)内单调递增,在(e,+∞)上单调递减,且h(x)max=h(e)=,又当x>1时,h(x)>h(1)=0恒成立,要使g(x)有两个零点,则函数h(x)=的图象与直线y=a+1有两个交点,所以0所以a的取值范围为.【规律方法】 已知函数零点个数求参数的取值范围问题的方法【跟踪训练2】已知函数f (x)=(x-2)ex-.(1)当a=-1时,求函数f (x)的极值;(2)g(x)=f (x)-,若g(x)存在3个零点,求实数a的取值范围.[解] (1)当a=-1时,f (x)=(x-2)ex+,f ′(x)=(x-1)ex+x-1=(x-1)(ex+1),由f ′(x)>0,得x>1,f ′(x)<0,得x<1,所以f (x)在(-∞,1)上单调递减,在(1,+∞)上单调递增,所以当x=1时,f (x)取得极小值为f (1)=-e,无极大值.(2)由函数g(x)=(x-2)ex-ax2+ax=(x-2),可得g(x)有一个零点为x=2,要使得g(x)存在3个零点,则需方程ex-ax=0(x≠2)有2个实根,而方程ex-ax=0(x≠2)可化为a=(x≠0,2),令h(x)=(x≠0,2),则函数y=a与y=h(x)的图象有两个交点.h′(x)==,令h′(x)=0,得x=1,当x变化时,h′(x),h(x)的变化情况列表如下:x (-∞,0) (0,1) 1 (1,2) (2,+∞)h′(x) - - 0 + +h(x) 单调递减 单调递减 极小值 单调递增 单调递增所以函数h(x)在x=1处取得极小值为2e.当x<0时,h(x)<0,又h(2)=e2,所以h(x)的大致图象如图,由函数y=a与y=h(x)的图象有两个交点,根据图象可得a∈(2e,e2)∪(e2,+∞).所以要使得g(x)存在3个零点,则实数a的取值范围是(2e,e2)∪(e2,+∞).隐零点问题【例3】 已知函数f (x)=ex-4ln x-4.(1)判断f (x)的导函数f '(x)在(1,+∞)上零点的个数,并说明理由;(2)证明:当x∈(1,+∞)时,ex-4xln x-1>0.(注:0.69[解] (1) f ′(x)=ex-,x∈(1,+∞),令h(x)=f ′(x)=ex-,x∈(1,+∞),则h′(x)=ex+>0,x∈(1,+∞),所以函数h(x)在(1,+∞)上单调递增,即f ′(x)在(1,+∞)上单调递增,又f ′(1)<0,f ′(2)>0,所以f (x)的导函数在(1,+∞)上零点的个数为1.(2)证明:令g(x)=ex-4x ln x-1,x∈(1,+∞),则g′(x)=ex-4ln x-4,即f (x)=g′(x),由(1)可知存在x0∈(1,2),使得f ′(x0)=0,当1x0时,f ′(x)>0,所以f (x)在(1,x0)内单调递减,在(x0,+∞)上单调递增,又因为f (1)<0,f (2)>0,存在x1∈(1,2),使得f (x1)=0,即-4ln x1-4=0,当1x1时,g′(x)>0,所以g(x)在(1,x1)内单调递减,在(x1,+∞)上单调递增,所以g(x)min=g(x1)=-4x1ln x1-1=4ln x1+4-4x1ln x1-1=4(1-x1)ln x1+3,令t(x)=(1-x)ln x,x∈(1,2),则t′(x)=-ln x+<0,x∈(1,2),所以函数t(x)在(1,2)内单调递减,所以t(x)>t(2)=-ln 2,所以x1∈(1,2)时,4(1-x1)ln x1+3>-4ln 2+3>0,即当x∈(1,+∞)时,ex-4x ln x-1>0恒成立.【规律方法】 隐零点问题求解的三个步骤(1)用函数零点存在定理判定导函数f '(x)存在零点,列出零点方程f '(x0)=0,并结合f (x)的单调性得到零点的取值范围.(2)以零点为分界点,说明导函数f '(x)的正负性,进而得到f (x)的最值表达式.(3)将零点方程适当变形,整体代入f (x)的最值表达式进行化简证明,有时(1)中零点的取值范围可以适当缩小.【跟踪训练3】已知函数f (x)=x-ln x-2.(1)讨论函数f (x)的单调性;(2)若对任意的x∈(1,+∞),都有x ln x+x>k(x-1)成立,求整数k的最大值.[解] (1)函数f (x)=x-ln x-2的定义域是(0,+∞),f ′(x)=1-,当x∈(0,1)时,f ′(x)<0,函数f (x)单调递减,当x∈(1,+∞)时,f ′(x)>0,函数f (x)单调递增,所以函数f (x)在(0,1)内单调递减,在(1,+∞)上单调递增.(2) x∈(1,+∞),x ln x+x>k(x-1) k<,令g(x)=,x>1,求导得g′(x)==,由(1)知,f (x)=x-ln x-2在(1,+∞)上单调递增,f (3)=1-ln 3<0,f (4)=2(1-ln 2)>0,因此存在唯一x0∈(3,4),使得f (x0)=0,即x0-ln x0-2=0 ln x0=x0-2,当x∈(1,x0)时,f (x)<0,即g′(x)<0,当x∈(x0,+∞)时,f (x)>0,即g′(x)>0,因此函数g(x)在(1,x0)内单调递减,在(x0,+∞)上单调递增,于是g(x)min=g(x0)===x0,则k所以整数k的最大值是3.2/2微专题7 零点问题判断函数零点的个数【例1】 (2025·安徽淮北二模)已知函数f(x)=x2-2x+aln x.(1)若a=1,求曲线y=f(x)在x=1处的切线方程;[听课记录] _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)求证:当a≥0时,f(x)有且仅有一个零点.[听课记录] _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【规律方法】 判断函数零点个数的方法(1)利用函数单调性和函数零点存在定理①讨论函数的单调性,确定函数的单调区间.②在每个单调区间上,利用函数零点存在定理判断零点的个数.③注意区间端点的选取技巧.④含参数时注意分类讨论.(2)利用数形结合函数的零点个数等于函数图象与x轴的交点个数,因此借助数形结合思想,可通过函数图象判断函数的零点个数.①利用导数研究函数f(x)的单调性、极值及最值情况,并结合函数值的正负情况及变化趋势,作出函数f(x)的大致图象,然后根据图象判断零点个数.②若函数f(x)的图象不易直接作出,可根据函数与方程思想将函数零点转化为方程的根,再将方程进行变形,转化为两个函数的图象交点问题,从而判断函数的零点个数.【跟踪训练1】已知函数f(x)=ex-sin x-1.(1)讨论函数f(x)在区间(0,+∞)上的单调性;(2)证明:函数f(x)在区间(-π,0]内有且仅有两个零点._________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________根据零点求参数的取值范围【例2】 (2025·重庆九龙坡三模)已知函数f(x)=-aln x-x2+(a+1)x,a∈R.(1)当a=2时,求函数f(x)的极值;(2)设g(x)=f(x)+(a-1)ln x+x2有两个不同的零点x1,x2,求a的取值范围.[听课记录] _________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【规律方法】 已知函数零点个数求参数的取值范围问题的方法【跟踪训练2】已知函数f(x)=(x-2)ex-ax2+ax+.(1)当a=-1时,求函数f(x)的极值;(2)g(x)=f(x)-,若g(x)存在3个零点,求实数a的取值范围._________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________隐零点问题【例3】 已知函数f(x)=ex-4ln x-4.(1)判断f(x)的导函数f'(x)在(1,+∞)上零点的个数,并说明理由;(2)证明:当x∈(1,+∞)时,ex-4xln x-1>0.(注:0.69[听课记录] _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【规律方法】 隐零点问题求解的三个步骤(1)用函数零点存在定理判定导函数f'(x)存在零点,列出零点方程f'(x0)=0,并结合f(x)的单调性得到零点的取值范围.(2)以零点为分界点,说明导函数f'(x)的正负性,进而得到f(x)的最值表达式.(3)将零点方程适当变形,整体代入f(x)的最值表达式进行化简证明,有时(1)中零点的取值范围可以适当缩小.【跟踪训练3】已知函数f(x)=x-ln x-2.(1)讨论函数f(x)的单调性;(2)若对任意的x∈(1,+∞),都有xln x+x>k(x-1)成立,求整数k的最大值.____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2/2 展开更多...... 收起↑ 资源列表 微专题7 零点问题(原卷版).docx 微专题7 零点问题(解析版).docx