高考数学文化题目的命制背景及2017年新课标数学试卷的对策:2017年高考数学文化内容预测一:回文数

资源下载
  1. 二一教育资源

高考数学文化题目的命制背景及2017年新课标数学试卷的对策:2017年高考数学文化内容预测一:回文数

资源简介

2017年高考数学文化内容预测一:回文数
一、高考考试大纲数学大纲分析及意义:
2017年普通高考考试大纲数学修订,加强了对数学文化的考查。针对这一修订提出以下建议:
建议教师对数学文化这一概念认真学习,结合教材内容学习,特别是教材中渗透数学文化的内容要充分重视,重点研究;结合近年新课标试题中出现的与数学文化有关的试题进行学习,重点关注题源、考法命题形式。
其主要意义为:
(1)增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.
(2)能力要求:经命题专家精细加工,再渗透现代数学思想和方法;在内涵方面,增加了基础性、综合性、应用性、创新性的要求.
二、通过往年新课标高考实例解析及做2017年数学文化考试预测:
分析一、古代数学书籍《九章算术》、《数书九章》等为背景
近年来在全国高考数学试题中,从《九章算术》中选取与当今高中数学教学相映的题材背景.
(1)2015年高考全国卷Ⅰ,文化题源于《九章算术》卷第五《商功》之[二五],将古代文化“依垣”和现代教育元素“圆锥”结合.
(2)2015年高考全国卷Ⅱ,文化题源于《九章算术》卷第一《方田》之[六]:“又有九十一分之四十九.问约之得几何?”“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之”,后人称之为“更相减损术”.
(3)2015年高考湖北卷,文化题背景源于《九章算术》卷第五《商功》之[一五].今有阳马,广五尺,袤七尺,高八尺.问积几何;之[一六]今有鳖臑,下广五尺,无袤;上袤四尺,无广,高七尺.问积几何.考题将“阳马”,“鳖臑”相结合,以《选修2-1》P109例4为源进行有机整合.巧妙嫁接,精典设问,和谐优美的考题呼之即出.
分析二:课后阅读或课后习题阿波罗尼圆为背景
从2005-2013年多次涉及考题,全国卷2011年16题以此为命题背景的其他省市:江苏:2008年13题、2013年17题.2009-2013年湖北高考连续出现等等.
数学文化题型背景预测:
预测一:古代数学书籍《九章算术》、《数书九章》等数为背景的数学文化类题目.
预测二:高等数学衔接知识类题目.
微积分、初等数学和高等数学的桥梁,由高中向大学的知识过渡衔接.
预测三:课本阅读和课后习题的数学文化类题目
必修3中:辗转相除法、更相减损术、秦九韶算法、二进制、割圆术等。。。
预测四:中外一些经典的数学问题类题目
如:回文数、匹克定理、角谷猜想、哥尼斯堡七桥问题、四色猜想等问题值得注意。
三、直击高考经典
12年湖北理科第13题——回文数
(2012?湖北)回文数是指从左到右与从右到左读都一样的正整数.如22,,11,3443,94249等.显然2位回文数有9个:11,22,33…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则:
(Ⅰ)4位回文数有 90 个;
(Ⅱ)2n+1(n∈N+)位回文数有 9×10n 个.
【考点】计数原理的应用。
【分析】:(I)利用回文数的定义,四位回文数只需从10个数字中选两个可重复数字即可,但要注意最两边的数字不能为0,利用分步计数原理即可计算4位回文数的个数;
(II)将(I)中求法推广到一般,利用分步计数原理即可计算2n+1(n∈N+)位回文数的个数
【解答】(I)4位回文数的特点为中间两位相同,千位和个位数字相同但不能为零,第一步,选千位和个位数字,共有9种选法;第二步,选中间两位数字,有10种选法;
故4位回文数有9×10=90个
故答案为 90
(II)第一步,选左边第一个数字,有9种选法;
第二步,分别选左边第2、3、4、…、n、n+1个数字,共有10×10×10×…×10=10n种选法,
故2n+1(n∈N+)位回文数有9×10n个
故答案为9×10n
【点评】本题主要考查了分步计数原理的运用,新定义数字问题的理解和运用,归纳推理的运用,属基础题
四、数学文化领悟
回文数
定义:“回文”是指正读反读都能读通的句子,它是古今中外都有的一种修辞方式和文字游戏,如“我为人人,人人为我”等。在数学中也有这样一类数字有这样的特征,成为回文数。
设n是一任意自然数。若将n的各位数字反向排列所得自然数n1与n相等,则称n为一回文数。例如,若n=1234321,则称n为一回文数;但若n=1234567,则n不是回文数。
注意:1.偶数个的数字也有回文数1244212.小数没有回文数
1千以内的回文数
在自然数中,最小的回文数是0,其次是1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,101,111,121,131,141,151,161,171,181,191,202,212,222,232,242,252,262,272,282,292,303,313,323,333,343,353,363,373,383,393,404,414,424,434,444,454,464,474,484,494,505,515,525,535,545,555,565,575,585,595,606,616,626,636,646,656,666,676,686,696,707,717,727,737,747,757,767,777,787,797,808,818,828,838,848,858,868,878,888,898,909,919,929,939,949,959,969,979,989,999.
平方回数
定义:一个回文数,它同时还是某一个数的平方,这样的数字叫做平方回数。例如:121。
100以上至1000以内的平方回数只有3个,分别是:121、484、676。
其中,121是11的平方。
484是22的平方,同时还是121的4倍。
676是26的平方,同时还是169的4倍。
举例说明
任意某一个数通过以下方式相加也可得到
如:29+92=121 还有 194+491=685,586+685=1271,1271+1721=2992
不过很多数还没有发现此类特征(比如196,下面会讲到)
另外个别平方数是回文数
1的平方=1
11的平方=121
111的平方=12321
1111的平方=1234321
……
……
依次类推
3×51=153
6×21=126
4307×62=267034
9×7×533=33579
上面这些算式,等号左边是两个(或三个)因数相乘,右边是它们的乘积。如果把每个算式中的“×”和“=”去掉,那么,它们都变成回文数,所以,我们不妨把这些算式叫做“回文算式”。还有一些回文算式,等号两边各有两个因数。请看:
12×42=24×21
34×86=68×43
102×402=204×201
1012×4202=2024×2101
不知你是否注意到,如果分别把上面的回文算式等号两边的因数交换位置,得到的仍是一个回文算式,比如:分别把“12×42=24×21”等号两边的因数交换位置,得到算式是:
42×12=21×24
这仍是一个回文算式。
还有更奇妙的回文算式,请看:
12×231=132×21(积是2772)
12×4032=2304×21(积是48384)
这种回文算式,连乘积都是回文数。
四位的回文数有一个特点,就是它决不会是一个质数。设它为abba,那它等于a*1000+b*100+b*10+a,1001a+110b。能被11整除。
六位的也一样,也能被11整除
还有,人们借助电子计算机发现,在完全平方数、完全立方数中的回文数,其比例要比一般自然数中回文数所占的比例大得多。例如11^2=121,22^2=484,7^3=343,11^3=1331,11^4=14641……都是回文数。
研究现状
人们迄今未能找到自然数(除0和1)的五次方,以及更高次幂的回文数。于是数学家们猜想:不存在n^k(n≥2,k≥5;n、k均是自然数)形式的回文数。
在电子计算器的实践中,还发现了一桩趣事:任何一个自然数与它的倒序数相加,所得的和再与和的倒序数相加,……如此反复进行下去,经过有限次步骤后,最后必定能得到一个回文数。
这也仅仅是个猜想,因为有些数并不“驯服”。比如说196这个数,按照上述变换规则重复了数十万次,仍未得到回文数。但是人们既不能肯定运算下去永远得不到回文数,也不知道需要再运算多少步才能最终得到回文数。
回文数算法
随意找一个十进制的数,把它倒过来成另一个数,再把这两个数相加,得一个和数,这是第一步;然后把这个和数倒过来,与原来的和数相加,又得到一个新的和数,这是第二步。照此方法,一步步接续往下算,直到出现一个“回文数”为n。例如:28+82=110,110+011=121,两步就得出了一个“回文数”。如果接着算下去,还会得到更多的“回文数”。这个过程称为“196算法”。
对回文数的探索过程
上而提到的196这个数,是第一个可能的“利克瑞尔数”,因而它受到了最多的关注。由于目前还不可能证明一个数永远不能形成“回文数”,所以“196和其他那些(看起来)不能形成回文数的数是利克瑞尔数”这一命题仅是猜想而非已获证明。能证明的仅是那些反例,即如果一个数最终能形成“回文数”,则它不是“利克瑞尔数”。
在电子计算机尚未问世的1938年,美国数学家莱默(D. Lehmer,1905-1991)计算到了第73步,得到了一个没有形成“回文数”的35位的和数。至今挑战此题的数学爱好者从没有间断过,并随着计算机科技的发展,不断有发烧友编写不同的程序对此题发起挑战。据笔者最新调查,领军人W.V.Landingham到2006年2月已经计算到了699万步,得到了一个2.89亿位以上的和数,之间的结果仍未出现“回文数”。
另外介绍一个关于达到“回文数”需要计算步数的世界记录。它是一个19位数字1,186,060,307,891,929,990,算出“回文数,,需要了261步。它是由Jason Doucette的算法及程序于2005年11月30日发现的。下表列举的是各位数字中,到达“回文数”花费步数最多的代表性数字。

展开更多......

收起↑

资源预览