【学练优】2017春(人教版)中考数学知识点梳理-第五单元四边形(2份打包)

资源下载
  1. 二一教育资源

【学练优】2017春(人教版)中考数学知识点梳理-第五单元四边形(2份打包)

资源简介

第五单元 四边形
第19讲 多边形与平行四边形
知识清单梳理
知识点一:多边形
关键点拨与对应举例
1.多边形的相关概念
(1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.
(2)对角线:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形;n边形对角线条数为.
多边形中求度数时,灵活选择公式求度数,解决多边形内角和问题时,多数列方程求解.
例:
(1)若一个多边形的内角和为1440°,则这个多边形的边数为10.
(2)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为九边形.
2.多边形的内角和、外角和
( 1 ) 内角和:n边形内角和公式为(n-2)·180°
(2)外角和:任意多边形的外角和为360°.
3.正多边形
(1)定义:各边相等,各角也相等的多边形.
(2)正n边形的每个内角为,每一个外角为360°/n.
( 3 ) 正n边形有n条对称轴.
(4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.
知识点二 :平行四边形的性质
4.平行四边形的定义
两组对边分别平行的四边形叫做平行四边形,平行四边形用“□”表示.
利用平行四边形的性质解题时的一些常用到的结论和方法:
(1)平行四边形相邻两边之和等于周长的一半.
(2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.
(3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.
例:
如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为9.6.
5.平行四边形的性质
边:两组对边分别平行且相等.
即AB∥CD 且AB=CD,BC∥AD且AD=BC.
(2)角:对角相等,邻角互补.
即∠BAD=∠BCD,∠ABC=∠ADC,
∠ABC+∠BCD=180°,∠BAD+∠ADC=180°.
(3)对角线:互相平分.即OA=OC,OB=OD
(4)对称性:中心对称但不是轴对称.
6.平行四边形中的几个解题模型
(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABF为等腰三角形,即AB=BF.
(2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;
两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;
根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.
(3) 如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE.
(4) 根据平行四边形的面积的求法,可得AE·BC=AF·CD.
知识点三 :平行四边形的判定
7.平行四边形的判定
(1)方法一(定义法):两组对边分别平行的四边形是平行四边形.
即若AB∥CD,AD∥BC,则四边形ABCD是□.
(2)方法二:两组对边分别相等的四边形是平行四边形.
即若AB=CD,AD=BC,则四边形ABCD是□.
(3)方法三:有一组对边平行且相等的四边形是平行四边形.
即若AB=CD,AB∥CD,或AD=BC,AD∥BC,则四边形ABCD是□.
(4)方法四:对角线互相平分的四边形是平行四边形.
即若OA=OC,OB=OD,则四边形ABCD是□.
(5)方法五:两组对角分别相等的四边形是平行四边形
若∠ABC=∠ADC,∠BAD=∠BCD,则四边形ABCD是□.
例:如图四边形ABCD的对角线相交于点O,AO=CO,请你添加一个条件BO=DO或AD∥BC或AB∥CD(只添加一个即可),使四边形ABCD为平行四边形.
第20讲 特殊的平行四边形
知识清单梳理
知识点一:特殊平行四边形的性质与判定
关键点拨及对应举例
1.性质
(具有平行四边形的一切性质,对边平行且相等)
矩 形
菱 形
正方形
(1)矩形中,Rt△ABD≌Rt△DCA≌Rt△CDB≌Rt△BAC; _两 对全等的等腰三角形.所以经常结合勾股定理、等腰三角形的性质解题.
(2)菱形中,有两对全等的等腰三角形;Rt△ABO≌Rt△ADO≌Rt△CBO≌Rt△CDO;若∠ABC=60°,则△ABC和△ADC为 等边 三角形,且四个直角三角形中都有一个30°的锐角.
(3)正方形中有8个等腰直角三角形,解题时结合等腰直角三角形的锐角为45°,斜边=直角边.
(1)四个角都是直角
(2)对角线相等且互相平分.即
AO=CO=BO=DO.
(3)面积=长×宽
=2S△ABD=4S△AOB.
(1)四边相等
(2)对角线互相垂直、平分,一条对角线平分一组对角
(3)面积=底×高
=对角线_乘积的一半
(1)四条边都相等,四个角都是直角
(2)对角线相等且互相垂直平分
(3)面积=边长×边长
=2S△ABD
=4S△AOB
2.判定
(1)定义法:有一个角是直角的平行四边形
(2)有三个角是直角
(3)对角线相等的平行四边形
(1)定义法:有一组邻边相等的平行四边形
(2)对角线互相垂直的平行四边形
(3)四条边都相等的四边形
(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形
(2)一组邻边相等的矩形
(3)一个角是直角的菱形
(4)对角线相等且互相垂直、平分
例:判断正误.
邻边相等的四边形为菱形.( )
有三个角是直角的四边形式矩形.
( )
对角线互相垂直平分的四边形是菱形. ( )
对边相等的矩形是正方形.( )
3.联系
包含关系:
知识点二:特殊平行四边形的拓展归纳
4.中点四边形
(1)任意四边形多得到的中点四边形一定是平行四边形.
(2)对角线相等的四边形所得到的中点四边形是矩形.
(3)对角线互相垂直的四边形所得到的中点四边形是菱形.
(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.
如图,四边形ABCD为菱形,则其中点四边形EFGD的形状是矩形.
5.特殊四边形中的解题模型
(1)矩形:如图①,E为AD上任意一点,EF过矩形中心O,则△AOE≌△COF,S1=S2.
(2)正方形:如图②,若EF⊥MN,则EF=MN;如图③,P为AD边上任意一点,则PE+PF=AO. (变式:如图④,四边形ABCD为矩形,则PE+PF的求法利用面积法,需连接PO.)

图① 图② 图③ 图④

展开更多......

收起↑

资源列表