资源简介 备战2010高考数学――压轴题跟踪演练系列三1.(本小题满分13分) 如图,已知双曲线C:的右准线与一条渐近线交于点M,F是双曲线C的右焦点,O为坐标原点. (I)求证:; (II)若且双曲线C的离心率,求双曲线C的方程; (III)在(II)的条件下,直线过点A(0,1)与双曲线C右支交于不同的两点P、Q且P在A、Q之间,满足,试判断的范围,并用代数方法给出证明.解:(I)右准线,渐近线 , ……3分 (II) 双曲线C的方程为: ……7分 (III)由题意可得 ……8分 证明:设,点 由得 与双曲线C右支交于不同的两点P、Q ……11分 ,得 的取值范围是(0,1) ……13分2.(本小题满分13分)已知函数,数列满足 (I)求数列的通项公式; (II)设x轴、直线与函数的图象所围成的封闭图形的面积为,求; (III)在集合,且中,是否存在正整数N,使得不等式对一切恒成立?若存在,则这样的正整数N共有多少个?并求出满足条件的最小的正整数N;若不存在,请说明理由. (IV)请构造一个与有关的数列,使得存在,并求出这个极限值.解:(I) ……1分 …… 将这n个式子相加,得 ……3分 (II)为一直角梯形(时为直角三角形)的面积,该梯形的两底边的长分别为,高为1 ……6分 (III)设满足条件的正整数N存在,则 又 均满足条件 它们构成首项为2010,公差为2的等差数列. 设共有m个满足条件的正整数N,则,解得 中满足条件的正整数N存在,共有495个, ……9分 (IV)设,即 则 显然,其极限存在,并且 ……10分 注:(c为非零常数),等都能使存在.19. (本小题满分14分) 设双曲线的两个焦点分别为,离心率为2. (I)求此双曲线的渐近线的方程; (II)若A、B分别为上的点,且,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线;(III)过点能否作出直线,使与双曲线交于P、Q两点,且.若存在,求出直线的方程;若不存在,说明理由.解:(I) ,渐近线方程为 4分 (II)设,AB的中点 则M的轨迹是中心在原点,焦点在x轴上,长轴长为,短轴长为的椭圆.(9分) (III)假设存在满足条件的直线 设 由(i)(ii)得 ∴k不存在,即不存在满足条件的直线. 14分3. (本小题满分13分) 已知数列的前n项和为,且对任意自然数都成立,其中m为常数,且. (I)求证数列是等比数列; (II)设数列的公比,数列满足:,试问当m为何值时,成立?解:(I)由已知 (2) 由得:,即对任意都成立 (II)当时, 由题意知, 13分4.(本小题满分12分)设椭圆的左焦点为,上顶点为,过点与垂直的直线分别交椭圆和轴正半轴于,两点,且分向量所成的比为8∶5.(1)求椭圆的离心率;(2)若过三点的圆恰好与直线:相切,求椭圆方程.解:(1)设点其中.由分所成的比为8∶5,得, 2分∴.①, 4分而,∴..②, 5分由①②知.∴. 6分(2)满足条件的圆心为,, 8分圆半径. 10分由圆与直线:相切得,,又.∴椭圆方程为. 12分5.(本小题满分14分)(理)给定正整数和正数,对于满足条件的所有无穷等差数列,试求的最大值,并求出取最大值时的首项和公差.(文)给定正整数和正数,对于满足条件的所有无穷等差数列,试求的最大值,并求出取最大值时的首项和公差.(理)解:设公差为,则. 3分 4分. 7分又.∴,当且仅当时,等号成立. 11分∴. 13分当数列首项,公差时,,∴的最大值为. 14分(文)解:设公差为,则. 3分, 6分又.∴.当且仅当时,等号成立. 11分∴. 13分当数列首项,公差时,.∴的最大值为. 14分6.(本小题满分12分)垂直于x轴的直线交双曲线于M、N不同两点,A1、A2分别为双曲线的左顶点和右顶点,设直线A1M与A2N交于点P(x0,y0)(Ⅰ)证明:(Ⅱ)过P作斜率为的直线l,原点到直线l的距离为d,求d的最小值.解(Ⅰ)证明: ①直线A2N的方程为 ②……4分①×②,得(Ⅱ)……10分当……12分7.(本小题满分14分) 已知函数 (Ⅰ)若 (Ⅱ)若 (Ⅲ)若的大小关系(不必写出比较过程).解:(Ⅰ) (Ⅱ)设,……6分(Ⅲ)在题设条件下,当k为偶数时当k为奇数时……14分2010年高考数学复习重点知识点90条已知集合A、B,当时,你是否注意到“极端”情况:或;求集合的子集时是否忘记?对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为反演律:,。“p且q”的否定是“非p或非q”;“p或q”的否定是“非p且非q”。命题的否定只否定结论;否命题是条件和结论都否定。函数的几个重要性质:①如果函数对于一切,都有,那么函数的图象关于直线对称(是偶函数;②若都有,那么函数的图象关于直线对称;函数与函数的图象关于直线对称;③函数与函数的图象关于直线对称;函数与函数的图象关于直线对称;函数与函数的图象关于坐标原点对称;④若奇函数在区间上是增函数,则在区间上也是增函数;若偶函数在区间上是增函数,则在区间上是减函数;⑤函数的图象是把的图象沿x轴向左平移a个单位得到的;函数(的图象是把的图象沿x轴向右平移个单位得到的;⑥函数+a的图象是把助图象沿y轴向上平移a个单位得到的;函数+a的图象是把助图象沿y轴向下平移个单位得到的。求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗?函数与其反函数之间的一个有用的结论:原函数与反函数图象的交点不全在y=x上(例如:);只能理解为在x+a处的函数值。原函数在区间上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗?10.一定要注意“>0(或<0)是该函数在给定区间上单调递增(减)的必要条件。你知道函数的单调区间吗?(该函数在或上单调递增;在或上单调递减)这可是一个应用广泛的函数!切记定义在R上的奇函数y=f(x)必定过原点。抽象函数的单调性、奇偶性一定要紧扣函数性质利用单调性、奇偶性的定义求解。同时,要领会借助函数单调性利用不等关系证明等式的重要方法:f(a)≥b且f(a)≤b(f(a)=b。对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论。数的换底公式及它的变形,你掌握了吗?()你还记得对数恒等式吗?()“实系数一元二次方程有实数解”转化为“”,你是否注意到必须;若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?例如:对一切恒成立,求a的取值范围,你讨论了a=2的情况了吗?等差数列中的重要性质:;若,则;成等差。等比数列中的重要性质:;若,则;成等比。你是否注意到在应用等比数列求前n项和时,需要分类讨论.(时,;时,)等差数列的一个性质:设是数列的前n项和,为等差数列的充要条件是(a, b为常数),其公差是2a。你知道怎样的数列求和时要用“错位相减”法吗?(若,其中是等差数列,是等比数列,求的前n项的和)用求数列的通项公式时,an一般是分段形式对吗?你注意到了吗? 你还记得裂项求和吗?(如)叠加法:叠乘法:在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?在△ABC中,sinA>sinB(A>B对吗?一般说来,周期函数加绝对值或平方,其周期减半.(如的周期都是,但及的周期为,)函数是周期函数吗?(都不是)正弦曲线、余弦曲线、正切曲线的对称轴、对称中心你知道吗?在三角中,你知道1等于什么吗?(这些统称为1的代换),常数“1”的种种代换有着广泛的应用.在三角的恒等变形中,要特别注意角的各种变换.(如 等)你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来)你还记得三角化简的通性通法吗?(从函数名、角、运算三方面进行差异分析,常用的技巧有:切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次)你还记得某些特殊角的三角函数值吗?()你还记得在弧度制下弧长公式和扇形面积公式吗?()辅助角公式:(其中角所在的象限由a, b 的符号确定,角的值由确定)在求最值、化简时起着重要作用.在用反三角函数表示直线的倾斜角、两向量的夹角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及意义? ①异面直线所成的角、直线与平面所成的角、二面角的取值范围依次是; ②直线的倾斜角、到的角、与的夹角的取值范围依次是; ③向量的夹角的取值范围是[0,π]若,,则,的充要条件是什么?如何求向量的模?在方向上的投影为什么?若与的夹角θ,且θ为钝角,则cosθ<0对吗?(必须去掉反向的情况)你还记得平移公式是什么?(这可是平移问题最基本的方法);还可以用结论:把y=f(x)图象向左移动|h|个单位,向上移动|k|个单位,则平移向量是=(-|h|,|k|)。不等式的解集的规范书写格式是什么?(一般要写成集合的表达式)分式不等式的一般解题思路是什么?(移项通分)含有两个绝对值的不等式如何去绝对值?(两边平方或分类讨论)利用重要不等式 以及变式等求函数的最值时,你是否注意到a,b(或a ,b非负),且“等号成立”时的条件?在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是…….解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”恒成立不等式问题通常解决的方法:借助相应函数的单调性求解,其主要技巧有数形结合法,分离变量法,换元法。教材中“直线和圆”与“圆锥曲线”两章内容体现出解析几何的本质是用代数的方法研究图形的几何性质。(04上海高考试题)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式.以及各种形式的局限性,(如点斜式不适用于斜率不存在的直线,所以设方程的点斜式或斜截式时,就应该先考虑斜率不存在的情形)。设直线方程时,一般可设直线的斜率为k,你是否注意到直线垂直于x轴时,斜率k不存在的情况?(例如:一条直线经过点,且被圆截得的弦长为8,求此弦所在直线的方程。该题就要注意,不要漏掉x+3=0这一解.)简单线性规划问题的可行域求作时,要注意不等式表示的区域是相应直线的上方、下方,是否包括边界上的点。利用特殊点进行判断)。对不重合的两条直线,,有; .直线在坐标轴上的截矩可正,可负,也可为0。直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当a=0时,直线y=kx在两条坐标轴上的截距都是0,也是截距相等。处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式法。一般来说,前者更简捷。处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系。在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形。定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清)在利用定比分点解题时,你注意到了吗?曲线系方程你知道吗?直线系方程?圆系方程?共焦点的椭圆系,共渐近线的双曲线系?两圆相交所得公共弦方程是两圆方程相减消去二次项所得。x0x+y0y=r2 表示过圆x2+y2=r2上一点(x0,y0)的切线,若点(x0,y0)在已知圆外,x0x+y0y=r2 表示什么?(切点弦)椭圆方程中三参数a、b、c的满足a2+b2=c2对吗?双曲线方程中三参数应满足什么关系?椭圆中,注意焦点、中心、短轴端点所组成的直角三角形。椭圆和双曲线的焦半径公式你记得吗?在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合。在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。通径是抛物线的所有焦点弦中最短的弦。过抛物线y2=2px(p>0)焦点的弦交抛物线于A(x1,y1),B(x2,y2),则,,焦半径公式|AB|=x1+x2+p。若A(x1,y1), B(x2,y2)是二次曲线C:F(x,y)=0的弦的两个端点,则F(x1,y1)=0 且F(x2,y2)=0。涉及弦的中点和斜率时,常用点差法作F(x1,y1)-F(x2,y2)=0求得弦AB的中点坐标与弦AB的斜率的关系。作出二面角的平面角主要方法是什么?(定义法、三垂线定理法、垂面法)求点到面的距离的常规方法是什么?(直接法、体积变换法、向量法)求两点间的球面距离关键是求出球心角。立体几何中常用一些结论:棱长为的正四面体的高为,体积为V=。面积射影定理,其中表示射影面积,表示原面积。异面直线所成角利用“平移法”求解时,一定要注意平移后所得角是所求角或其补角。平面图形的翻折、立体图形的展开等一类问题,要注意翻折、展开前后有关几何元素的“不变量”与“不变性”。棱体的顶点在底面的射影何时为底面的内心、外心、垂心、重心?解排列组合问题的规律是:元素分析法、位置分析法——相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。二项式定理中,“系数最大的项”、“项的系数的最大值”、“项的二项式系数的最大值”是同一个概念吗?求二项展开式各项系数代数和的有关问题中的“赋值法”、“转化法”,求特定项的“通项公式法”、“结构分析法”你会用吗?注意二项式的一些特性(如;)。公式P(A+B)=P(A)+P(B),P(AB)=P(A)P(B)的适用条件是什么?简单随机抽样和分层抽样的共同点是每个个体被抽到的概率相等。=0是函数y=f(x)在x=x0处有极值的必要不充分条件。注意曲线上某点处的导数值就是切线的斜率。(导数的几何意义)解直答题(选择题和填空题)的特殊方法是什么?(直接法,数形结合法,特殊化法,推理分析法,排除法,验证法,估算法等等)解答应用型问题时,最基本要求是什么?(审题、找准题目中的关键词,设未知数、列出函数关系式、代入初始条件、注明单位、做答)求轨迹方程的常用方法有:直接法、待定系数法、定义法、转移法(相关点法)、参数法等。由于高考采取电脑阅卷,所以一定要努力使字迹工整,卷面整洁,切记在规定区域答题。保持良好的心态,是正常发挥、高考取胜的关键!立体几何题型与方法(理科)1.平面平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合2. 空间直线.(1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系是平行或相交③若直线a、b异面,a平行于平面,b与的关系是相交、平行、在平面内.④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形)⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点向这个平面所引的垂线段和斜线段)⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面.⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角)(向量与向量所成角 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(3). 两异面直线的距离:公垂线段的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.[注]:是异面直线,则过外一点P,过点P且与都平行平面有一个或没有,但与距离相等的点在同一平面内. (或在这个做出的平面内不能叫与平行的平面)3. 直线与平面平行、直线与平面垂直.(1). 空间直线与平面位置分三种:相交、平行、在平面内.(2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行线面平行”)[注]:①直线与平面内一条直线平行,则∥. (×)(平面外一条直线)②直线与平面内一条直线相交,则与平面相交. (×)(平面外一条直线)③若直线与平面平行,则内必存在无数条直线与平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线与平面、所成角相等,则∥.(×)(、可能相交)(3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行线线平行”)(4). 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. 若⊥,⊥,得⊥(三垂线定理),三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质:如果两条直线同垂直于一个平面,那么这两条直线平行.(5).a.垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。4. 平面平行与平面垂直.(1). 空间两个平面的位置关系:相交、平行.(2). 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面内的任一直线平行于另一平面.(3). 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行线线平行”)(4). 两个平面垂直判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直判定二:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直面面垂直”)注:如果两个二面角的平面分别对应互相垂直,则两个二面角没有什么关系.(5). 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.简证:如图,在平面内过O作OA、OB分别垂直于,因为则.所以结论成立 (6). 两异面直线任意两点间的距离公式:(为锐角取减,为钝角取加,综上,都取减则必有)(1). a.最小角定理:(为最小角,如图)b.最小角定理的应用(∠PBN为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条.成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条.成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 5. 棱柱. 棱锥(1). 棱柱.a.①直棱柱侧面积:(为底面周长,是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:(是斜棱柱直截面周长,是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.b.{四棱柱}{平行六面体}{直平行六面体}{长方体}{正四棱柱}{正方体}.{直四棱柱}{平行六面体}={直平行六面体}.c.棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形;正棱柱的各个侧面都是全等的矩形.②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是矩形,可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.d.平行六面体:定理一:平行六面体的对角线交于一点,并且在交点处互相平分.[注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为,则 .推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为,则.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四棱柱的两个平行的平面可以为矩形)②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直棱柱才行)③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)(2). 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形.[注]:①一个三棱锥四个面可以都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以.a.①正棱锥定义:底面是正多边形;顶点在底面的射影为底面正多边形的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正三角形,侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形.②正棱锥的侧面积:(底面周长为,斜高为)③棱锥的侧面积与底面积的射影公式:(侧面与底面成的二面角为)附:以知⊥,,为二面角. 则①,②,③ ①②③得.注:S为任意多边形的面积(可分别求多个三角形面积和的方法).b.棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.c.特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三棱锥,两条相对棱互相垂直,则第三组相对棱必然垂直. 简证:AB⊥CD,AC⊥BD BC⊥AD. 令得,已知则.iii. 空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形.iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC中点,则平面90°易知EFGH为平行四边形EFGH为长方形.若对角线等,则为正方形.(3). 球:a.球的截面是一个圆面.①球的表面积公式:.②球的体积公式:.b.纬度、经度:①纬度:地球上一点的纬度是指经过点的球半径与赤道面所成的角的度数.②经度:地球上两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点的经线是本初子午线时,这个二面角的度数就是点的经度.附:①圆柱体积:(为半径,为高)②圆锥体积:(为半径,为高)③锥体体积:(为底面积,为高) (1). ①内切球:当四面体为正四面体时,设边长为a,,,,得.注:球内切于四面体:。②外接球:球外接于正四面体,可如图建立关系式.6. 空间向量.(1). a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.注:①若与共线,与共线,则与共线.(×) [当时,不成立]②向量共面即它们所在直线共面.(×) [可能异面]③若∥,则存在小任一实数,使.(×)[与不成立]④若为非零向量,则.(√)[这里用到之积仍为向量]b.共线向量定理:对空间任意两个向量, ∥的充要条件是存在实数(具有唯一性),使.c.共面向量:若向量使之平行于平面或在内,则与的关系是平行,记作∥.d.①共面向量定理:如果两个向量不共线,则向量与向量共面的充要条件是存在实数对x、y使.②空间任一点O和不共线三点A、B、C,则是PABC四点共面的充要条件.(简证:P、A、B、C四点共面)注:①②是证明四点共面的常用方法.(2). 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组x、y、z,使.推论:设O、A、B、C是不共面的四点,则对空间任一点P, 都存在唯一的有序实数组x、y、z使 (这里隐含x+y+z≠1).注:设四面体ABCD的三条棱,其中Q是△BCD的重心,则向量用即证.对空间任一点O和不共线的三点A、B、C,满足,则四点P、A、B、C是共面(3).a.空间向量的坐标:空间直角坐标系的x轴是横轴(对应为横坐标),y轴是纵轴(对应为纵坐标),z轴是竖轴(对应为竖坐标).①令=(a1,a2,a3),,则,, ,∥ 。。 (向量模与向量之间的转化:)空间两个向量的夹角公式(a=,b=)。②空间两点的距离公式:.b.法向量:若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果那么向量叫做平面的法向量. c.向量的常用方法:①利用法向量求点到面的距离定理:如图,设n是平面的法向量,AB是平面的一条射线,其中,则点B到平面的距离为.②.异面直线间的距离 (是两异面直线,其公垂向量为,分别是上任一点,为间的距离).③.直线与平面所成角(为平面的法向量).④.利用法向量求二面角的平面角定理:设分别是二面角中平面的法向量,则所成的角就是所求二面角的平面角或其补角大小(方向相同,则为补角,反方,则为其夹角).二面角的平面角或(,为平面,的法向量).d.证直线和平面平行定理:已知直线平面,,且C、D、E三点不共线,则a∥的充要条件是存在有序实数对使.(常设求解若存在即证毕,若不存在,则直线AB与平面相交).7.知识网络经典例题剖析考点一 空间向量及其运算1. 已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一定共面?解析:要判断点与是否一定共面,即是要判断是否存在有序实数对使或对空间任一点,有。答案:由题意:,∴,∴,即,所以,点与共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.2. 如图,已知矩形和矩形所在平面互相垂直,点,分别在对角线,上,且,.求证:平面.解析:要证明平面,只要证明向量可以用平面内的两个不共线的向量和线性表示.答案:证明:如图,因为在上,且,所以.同理,又,所以.又与不共线,根据共面向量定理,可知,,共面.由于不在平面内,所以平面.点评:空间任意的两向量都是共面的.与空间的任两条直线不一定共面要区别开.考点二 证明空间线面平行与垂直3. 如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点, (I)求证:AC⊥BC1; (II)求证:AC 1//平面CDB1;解析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行.答案:解法一:(I)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5,∴ AC⊥BC,且BC1在平面ABC内的射影为BC,∴ AC⊥BC1;(II)设CB1与C1B的交点为E,连结DE,∵ D是AB的中点,E是BC1的中点,∴ DE//AC1,∵ DE平面CDB1,AC1平面CDB1,∴ AC1//平面CDB1;解法二:∵直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,∴AC、BC、C1C两两垂直,如图,以C为坐标原点,直线CA、CB、C1C分别为x轴、y轴、z轴,建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D(,2,0)(1)∵=(-3,0,0),=(0,-4,0),∴?=0,∴AC⊥BC1.(2)设CB1与C1B的交战为E,则E(0,2,2).∵=(-,0,2),=(-3,0,4),∴,∴DE∥AC1.点评:2.平行问题的转化:面面平行线面平行线线平行;主要依据是有关的定义及判定定理和性质定理.?4. (2007武汉3月)如图所示,四棱锥P—ABCD中,ABAD,CDAD,PA底面ABCD,PA=AD=CD=2AB=2,M为PC的中点。(1)求证:BM∥平面PAD;(2)在侧面PAD内找一点N,使MN平面PBD;(3)求直线PC与平面PBD所成角的正弦。解析:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力.答案:(1)是的中点,取PD的中点,则,又四边形为平行四边形∥,∥ (4分) (2)以为原点,以、、 所在直线为轴、轴、轴建立空间直角坐标系,如图,则,,,,,在平面内设,,, 由 由 是的中点,此时 (8分) (3)设直线与平面所成的角为,,设为 故直线与平面所成角的正弦为 (12分)解法二: (1)是的中点,取PD的中点,则,又四边形为平行四边形∥,∥ (4分) (2)由(1)知为平行四边形,又 同理, 为矩形 ∥,,又 作故交于,在矩形内,,, 为的中点当点为的中点时, (8分) (3)由(2)知为点到平面的距离,为直线与平面所成的角,设为,直线与平面所成的角的正弦值为 点评:(1)证明线面平行只需证明直线与平面内一条直线平行即可;(2)求斜线与平面所成的角只需在斜线上找一点作已知平面的垂线,斜线和射影所成的角,即为所求角;(3)证明线面垂直只需证此直线与平面内两条相交直线垂直变可.这些从证法中都能十分明显地体现出来考点三 求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°,其方法是:①定义法;②三垂线定理及其逆定理;③垂面法 另外也可借助空间向量求这三种角的大小.5. (四川省成都市2007届高中毕业班第三次诊断性检测)如图,四棱锥中,侧面是边长为2的正三角形,且与底面垂直,底面是的菱形,为的中点.(Ⅰ)求与底面所成角的大小;(Ⅱ)求证:平面;(Ⅲ)求二面角的余弦值. 解析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法 求二面角的大小也可应用面积射影法,比较好的方法是向量法 答案:(I)取DC的中点O,由ΔPDC是正三角形,有PO⊥DC.又∵平面PDC⊥底面ABCD,∴PO⊥平面ABCD于O.连结OA,则OA是PA在底面上的射影.∴∠PAO就是PA与底面所成角.∵∠ADC=60°,由已知ΔPCD和ΔACD是全等的正三角形,从而求得OA=OP=.∴∠PAO=45°.∴PA与底面ABCD可成角的大小为45°. ……6分(II)由底面ABCD为菱形且∠ADC=60°,DC=2,DO=1,有OA⊥DC. 建立空间直角坐标系如图,则, .由M为PB中点,∴.∴.∴,.∴PA⊥DM,PA⊥DC. ∴PA⊥平面DMC. ……4分(III).令平面BMC的法向量,则,从而x+z=0; ……①, ,从而. ……②由①、②,取x=?1,则. ∴可取.由(II)知平面CDM的法向量可取,∴. ∴所求二面角的余弦值为-. ……6分法二:(Ⅰ)方法同上 (Ⅱ)取的中点,连接,由(Ⅰ)知,在菱形中,由于,则,又,则,即,又在中,中位线,,则,则四边形为,所以,在中,,则,故而,则(Ⅲ)由(Ⅱ)知,则为二面角的平面角,在中,易得,,故,所求二面角的余弦值为 点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.6. (2007河北省唐山市三模)如图,在长方体中,点在线段上.(Ⅰ)求异面直线与所成的角;(Ⅱ)若二面角的大小为,求点到平面的距离.解析:本题涉及立体几何线面关系的有关知识, 本题实质上求角度和距离,在求此类问题中,要将这些量归结到三角形中,最好是直角三角形,这样有利于问题的解决,此外用向量也是一种比较好的方法.答案:解法一:(Ⅰ)连结。由已知,是正方形,有。∵平面,∴是在平面内的射影。根据三垂线定理,得,则异面直线与所成的角为。作,垂足为,连结,则所以为二面角的平面角,.于是易得,所以,又,所以。设点到平面的距离为.∵即,∴,即,∴.故点到平面的距离为。解法二:分别以为轴、轴、轴,建立空间直角坐标系.(Ⅰ)由,得设,又,则。∵∴则异面直线与所成的角为。(Ⅱ)为面的法向量,设为面的法向量,则∴. ①由,得,则,即∴ ②由①、②,可取又,所以点到平面的距离。 点评:立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求角度和距离,在求此类问题中,尽量要将这些量归结于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较容易写出来.考点四 探索性问题7. (2007年4月济南市)如图所示:边长为2的正方形ABFC和高为2的直角梯形ADEF所在的平面互相垂直且DE=,ED//AF且∠DAF=90°。 (1)求BD和面BEF所成的角的余弦; (2)线段EF上是否存在点P使过P、A、C三点的平面和直线DB垂直,若存在,求EP与PF的比值;若不存在,说明理由。解析:1.先假设存在,再去推理,下结论: 2.运用推理证明计算得出结论,或先利用条件特例得出结论,然后再根据条件给出证明或计算。答案:(1)因为AC、AD、AB两两垂直,建立如图坐标系,则B(2,0,0),D(0,0,2),E(1,1,2),F(2,2,0),则设平面BEF的法向量,则可取,∴向量所成角的余弦为。即BD和面BEF所成的角的余弦。 (2)假设线段EF上存在点P使过P、A、C三点的平面和直线DB垂直,不妨设EP与PF的比值为m,则P点坐标为则向量,向量所以。 点评:本题考查了线线关系,线面关系及其相关计算,本题采用探索式、开放式设问方式,对学生灵活运用知识解题提出了较高要求。8. (2007安徽·文) 如图,在三棱锥中,,,是的中点,且,.(I)求证:平面平面;(II)试确定角的值,使得直线与平面所成的角为.解析:本例可利用综合法证明求解,也可用向量法求解.答案:解法1:(Ⅰ),是等腰三角形,又是的中点,,又底面..于是平面.又平面,平面平面.(Ⅱ) 过点在平面内作于,则由(Ⅰ)知平面.连接,于是就是直线与平面所成的角.依题意,所以在中,;在中,,.,.故当时,直线与平面所成的角为.解法2:(Ⅰ)以所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,则,于是,,,.从而,即.同理,即.又,平面.又平面.平面平面.(Ⅱ)设平面的一个法向量为,则由.得可取,又,于是,即,.故交时,直线与平面所成的角为.解法3:(Ⅰ)以点为原点,以所在的直线分别为轴、轴,建立如图所示的空间直角坐标系,则,,于是,,.从而,即.同理,即.又, 平面.又平面, 平面平面.(Ⅱ)设平面的一个法向量为,则由,得可取,又,于是,即. 故角时,即直线与平面所成角为. 点评:证明两平面垂直一般用面面垂直的判定定理,求线面角一是找线在平面上的射影在直角三角形中求解,但运用更多的是建空间直角坐标系,利用向量法求解考点五 折叠、展开问题9.(2006年辽宁高考)已知正方形 、分别是、的中点,将沿折起,如图所示,记二面角的大小为 (I) 证明平面;(II)若为正三角形,试判断点在平面内的射影是否在直线上,证明你的结论,并求角的余弦值 分析:充分发挥空间想像能力,重点抓住不变的位置和数量关系,借助模型图形得出结论,并给出证明.解: (I)证明:EF分别为正方形ABCD得边AB、CD的中点,EB//FD,且EB=FD,四边形EBFD为平行四边形 BF//ED.,平面 (II)如右图,点A在平面BCDE内的射影G在直线EF上,过点A作AG垂直于平面BCDE,垂足为G,连结GC,GD ACD为正三角形,AC=AD.CG=GD.G在CD的垂直平分线上, 点A在平面BCDE内的射影G在直线EF上,过G作GH垂直于ED于H,连结AH,则,所以为二面角A-DE-C的平面角 即.设原正方体的边长为2a,连结AF,在折后图的AEF中,AF=,EF=2AE=2a,即AEF为直角三角形, . 在RtADE中, ., 点评:在平面图形翻折成空间图形的这类折叠问题中,一般来说,位于同一平面内的几何元素相对位置和数量关系不变:位于两个不同平面内的元素,位置和数量关系要发生变化,翻折问题常用的添辅助线的方法是作棱的垂线。关键要抓不变的量.考点六 球体与多面体的组合问题10.设棱锥M-ABCD的底面是正方形,且MA=MD,MA⊥AB,如果ΔAMD的面积为1,试求能够放入这个棱锥的最大球的半径.分析:关键是找出球心所在的三角形,求出内切圆半径.解: ∵AB⊥AD,AB⊥MA,∴AB⊥平面MAD,由此,面MAD⊥面AC.记E是AD的中点,从而ME⊥AD.∴ME⊥平面AC,ME⊥EF.设球O是与平面MAD、平面AC、平面MBC都相切的球.不妨设O∈平面MEF,于是O是ΔMEF的内心.设球O的半径为r,则r=设AD=EF=a,∵SΔAMD=1.∴ME=.MF=,r=≤=-1。当且仅当a=,即a=时,等号成立.∴当AD=ME=时,满足条件的球最大半径为-1.点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题,再利用平面几何知识寻找几何体中元素间的关系。注意多边形内切圆半径与面积和周长间的关系;多面体内切球半径与体积和表面积间的关系。方法总结 高考预测(一)方法总结1.位置关系:(1).两条异面直线相互垂直 证明方法:证明两条异面直线所成角为90o;证明两条异面直线的方向量相互垂直。(2).直线和平面相互平行证明方法:证明直线和这个平面内的一条直线相互平行;证明这条直线的方向向量和这个平面内的一个向量相互平行;证明这条直线的方向向量和这个平面的法向量相互垂直。(3).直线和平面垂直证明方法:证明直线和平面内两条相交直线都垂直,证明直线的方向量与这个平面内不共线的两个向量都垂直;证明直线的方向量与这个平面的法向量相互平行。(4).平面和平面相互垂直证明方法:证明这两个平面所成二面角的平面角为90o;证明一个平面内的一条直线垂直于另外一个平面;证明两个平面的法向量相互垂直。2.求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。(1).两条异面直线的距离求法:利用公式(其中A、B分别为两条异面直线上的一点,为这两条异面直线的法向量)(2).点到平面的距离求法:“一找二证三求”,三步都必须要清楚地写出来。等体积法。向量法,利用公式(其中A为已知点,B为这个平面内的任意一点,这个平面的法向量)3.求角(1).两条异面直线所成的角求法:先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。(2).直线和平面所成的角求法:“一找二证三求”,三步都必须要清楚地写出来。向量法,先求直线的方向量于平面的法向量所成的角α,那么所要求的角为或。(3).平面与平面所成的角求法:“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。通过射影面积来求(在其中一个平面内找出一个三角形,然后找这个三角形在另外一个平面的射影,那么这个三角形的射影面积与原三角形面积之比即为cosα,注意到我们要求的角为α或π-α);向量法,先求两个平面的法向量所成的角为α,那么这两个平面所成的二面角的平面角为α或π-α。 我们现在来解决立体几何的有关问题的时候,注意到向量知识的应用,如果可以比较容易建立坐标系,找出各点的坐标,那么剩下的问题基本上就可以解决了,如果建立坐标系不好做的话,有时求距离、角的时候也可以用向量,运用向量不是很方便的时候,就用传统的方法了!4.解题注意点(1).我们现在提倡用向量来解决立体几何的有关问题,但是当运用向量不是很方便的时候,传统的解法我们也要能够运用自如。(2).我们如果是通过解三角形去求角、距离的时候,做到“一找二证三求”,解题的过程中一定要出现这样一句话,“∠α是我们所要求的角”、“线段AB的长度就是我们所要求的距离”等等。让人看起来一目了然。(3).用向量来求两条异面直线所成角时,若求出cosα=x,则这两条异面直线所成的角为α=arccos|x|(4).在求直线与平面所成的角的时候,法向量与直线方向量所成的角或者法向量与直线的方向量所成角的补交与我们所要求的角互余,所以要或,若求出的角为锐角,就用,若求出的钝角,就用。(5).求二面角时,若用第、种方法,先要去判断这个二面角的平面角是钝角还是锐角,然后再根据我们所作出的判断去取舍。(二)2008年高考预测从近几年各地高考试题分析,立体几何题型一般是一个解答题,1至3个填空或选择题.解答题一般与棱柱和棱锥相关,主要考查线线关系、线面关系和面面关系,其重点是考查空间想象能力和推理运算能力,其解题方法一般都有二种以上,并且一般都能用空间向量来求解.?高考试题中,立体几何侧重考查学生的空间概念、逻辑思维能力、空间想象能力及运算能力?.?近几年凡涉及空间向量应用于立体几何的高考试题,都着重考查应用空间向量求异面直线所成的角、二面角,证明线线平行、线面平行和证明异面直线垂直和线面垂直等基本问题。??????? 高考对立体几何的考查侧重以下几个方面:1.从命题形式来看,涉及立体几何内容的命题形式最为多变?.?除保留传统的“四选一”的选择题型外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型,并且这种命题形式正在不断完善和翻新;解答题则设计成几个小问题,此类考题往往以多面体为依托,第一小问考查线线、线面、面面的位置关系,后面几问考查空间角、空间距离、面积、体积等度量关系,其解题思路也都是“作——证——求”,强调作图、证明和计算相结合。?2.从内容上来看,主要是:①考查直线和平面的各种位置关系的判定和性质,这类试题一般难度不大,多为选择题和填空题;②计算角的问题,试题中常见的是异面直线所成的角,直线与平面所成的角,平面与平面所成的二面角,这类试题有一定的难度和需要一定的解题技巧,通常要把它们转化为相交直线所成的角;③求距离,试题中常见的是点与点之间的距离,点到直线的距离,点到平面的距离,直线与直线的距离,直线到平面的距离,要特别注意解决此类问题的转化方法;④简单的几何体的侧面积和表面积问题,解此类问题除特殊几何体的现成的公式外,还可将侧面展开,转化为求平面图形的面积问题;⑤体积问题,要注意解题技巧,如等积变换、割补思想的应用。?3.从方法上来看,着重考查公理化方法,如解答题注重理论推导和计算相集合;考查转化的思想方法,如经常要把立体几何问题转化为平面几何问题来解决;考查模型化方法和整体考虑问题、处理问题的方法,如有时把形体纳入不同的几何背景之中,从而宏观上把握形体,巧妙地把问题解决;考查割补法、等积变换法,以及变化运动的思想方法,极限方法等。??4.从能力上来看,着重考查空间想象能力,即空间形体的观察分析和抽象的能力,要求是“四会”:①会画图——根据题设条件画出适合题意的图形或画出自己想作的辅助线(面),作出的图形要直观、虚实分明;②会识图——根据题目给出的图形,想象出立体的形状和有关线面的位置关系;③会析图——对图形进行必要的分解、组合;④会用图——对图形或其某部分进行平移、翻折、旋转、展开或实行割补术;考查逻辑思维能力、运算能力和探索能力。强化训练选择题1.定点P不在△ABC所在平面内,过P作平面α,使△ABC的三个顶点到α的距离相等,这样的平面共有 ( )(A)1个 (B)2个 (C)3个 (D)4个2.P为矩形ABCD所在平面外一点,且PA⊥平面ABCD,P到B,C,D三点的距离分别是,,,则P到A点的距离是 ( )(A)1 (B)2 (C) (D)4 3.直角三角形ABC的斜边AB在平面α内,直角顶点C在平面α外,C在平面α内的射影为C1,且C1AB,则△C1AB为 ( )(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)以上都不对4.已知四点,无三点共线,则可以确定( )A.1个平面 B.4个平面 C.1个或4个平面 D.无法确定5. 已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧且相距是1,那么这个球的半径是( )A.4 B.3 C.2 D.56.球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过3个点的小圆的周长为4π,那么这个球的半径为( )A.4 B.2 C.2 D. 7.棱长为1的正方体ABCD-A1B1C1D1被以A为球心,AB为半径的球相截,则被截形体的表面积为( ) A.π B.π C.π D.π8.某刺猬有2006根刺,当它蜷缩成球时滚到平面上,任意相邻的三根刺都可支撑住身体,且任意四根刺的刺尖不共面,问该刺猬蜷缩成球时,共有( )种不同的支撑身体的方式。 A.2006 B.4008 C.4012 D.20089.命题①空间直线a,b,c,若a∥b,b∥c则a∥c ②非零向量,若∥,∥则∥ ③平面α、β、γ若α⊥β,β⊥γ,则α∥γ ④空间直线a、b、c若有a⊥b,b⊥c,则a∥c⑤直线a、b与平面β,若a⊥β,c⊥β,则a∥c 其中所有真命题的序号是( ) A.①②③ B.①③⑤ C.①②⑤ D.②③⑤10.在正三棱锥中,相邻两侧面所成二面角的取值范围是( )A、 B、 C、(0,) D、11.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于( ) A.2 B.2 C.4 D.212.以正方体的任意三个顶点为顶点作三角形,从中随机地取出两个三角形,则这两个三角形不共面的概率为 ( )A. B. C. D.1—12解答1.【答案】D解析: 过P作一个与AB,AC都平行的平面,则它符合要求;设边AB,BC,CA的中点分别为E,F,G,则平面PEF符合要求;同理平面PFG,平面PGE符合要求2.【答案】A解析:设AB=a,BC=b,PA=h,则a2+h2=5, b2+h2=13, a2+b2+h2=17,∴h=1.3.【答案】C解析:∵C1A2+C1B24.【答案】C.解析: 因为无三点共线,所以任意三个点都可以确定平面α,若第四个点也在α内,四个点确定一个平面,当第四个点在α外,由公理3知可确定4个平面.故选C.5.【答案】B解析: 如图,设球的半径是r,则πBD2=5π,πAC2=8π,∴BD2=5,AC2=8.又AB=1,设OA=x.∴x2+8=r2,(x+1)2+5=r2.解之,得r=3 故选B. 6.【答案】B解析: 设球半径为R,小圆半径为r,则2πr=4π,∴r=2.如图,设三点A、B、C,O为球心,∠AOB=∠BOC=∠COA=,又∵OA=OB∴ΔAOB是等边三角形同理,ΔBOC、ΔCOA都是等边三角形,得ΔABC为等边三角形.边长等于球半径R,r为ΔABC的外接圆半径.r=AB=R R=r=2∴应选B.7.【答案】A.解析:S=π·12×3+×4π·12=π。8.【答案】B.解析:当有n根刺时有an种支撑法,n = 4,5, 6,… ,则an+1=an+3-1=an+2或an+1=an+4-2=an+2,∴{an}n = 4,5,6,…, 为等差数列,∵a4 = 4∴an=2n-4,A2006=4008 。 9.【答案】C.解析:由传递性知①②正确;由线面垂直性质知⑤正确;由空间直角坐标系中三坐标平面关系否定③;三坐标轴关系否定④。10.【答案】A.解析:法一:考察正三棱锥P–ABC,O为底面中心,不妨将底面正△ABC固定,顶点P运动,相邻两侧面所成二面角为∠AHC.当PO→0时,面PAB→△OAB,面PBC→△OBC,∠AHC→π当PO→+∞时,∠AHC→∠ABC=. 故<∠AHC <π,选A.法二:不妨设AB=2,PC= x,则x > OC =.等腰△PBC中,S△PBC =x·CH =·2·CH =等腰△AHC中,sin由x>得<1,∴<∠AHC<π.11.【答案】B.解析:由已知得底面对角线的一半为2,所以底面边长的一半等于2,由勾股定得斜高为.12.【答案】A解析:此问题可以分解成五个小问题:(1)由正方体的八个顶点可以组成个三角形;(2)正方体八个顶点中四点共面有12个平面;(3)在上述12个平面中每个四边形中共面的三角形有个;(4)从56个三角形中任取两个三角形共面的概率;(5)从56个三角形中任取两个三角形不共面的概率,利用对立事件的概率的公式,得故选A.填空题13.在三棱锥P—ABC中,底面是边长为2 cm的正三角形,PA=PB=3 cm,转动点P时,三棱锥的最大体积为 .14.P为所在平面外一点,PA、PB、PC与平面ABC所的角均相等,又PA与BC垂直,那么的形状可以是 。①正三角形②等腰三角形③非等腰三角形④等腰直角三角形15.将边长为3的正四面体以各顶点为顶点各截去(使截面平行于底面)边长为1的小正四面体,所得几何体的表面积为_____________ .16.如图,正方体ABCD-A1B1C1D1的棱长为1,点M在A上,且AM=AB,点P在平面ABCD上,且动点P到直线A1D1的距离的平方与P到点M的距离的平方差为1,在平面直角坐标系xAy中,动点P的轨迹方程是 . 13—16解答13.。cm3.解析:点P到面ABC距离最大时体积最大,此时面PAB⊥面ABC,高PD=2cm.V=.14.由题意可知的外心在BC边的高线上,故一定有AB=AC选(1)(2)(4)。15..解析:原四个顶点截去后剩下截面为边长为1的正三角形,而原四面体的四个侧面变为边长为1的正六边形,其表积为 .16.。解析:过P点作PQ⊥AD于Q,再过Q作QH⊥A1D1于H,连PH,利用三垂线定理可证PH⊥A1D1. 设P(x,y),∵|PH|2 - |PH|2 = 1,∴x2 +1- [(x)2+y2] =1,化简得.解答题17. 已知,从平面外一点引向量,(1)求证:四点共面;(2)平面平面.解:(1)∵四边形是平行四边形,∴,∵,∴共面;(2)∵,又∵,∴所以,平面平面.18. 如图,是正四棱锥,是正方体,其中.(Ⅰ)求证:;(Ⅱ)求平面与平面所成的锐二面角的大小;(Ⅲ)求到平面的距离.解:(Ⅰ) 连结AC , 交BD于点O , 连结PO , 则PO⊥面ABCD , 又∵ , ∴, ∵, ∴ . (Ⅱ) ∵AO⊥BD , AO⊥PO , ∴AO⊥面PBD , 过点O作OM⊥PD于点M,连结AM , 则AM⊥PD , ∴∠AMO 就是二面角A-PD-O的平面角, 又∵, ∴AO=,PO= , ∴ ,即二面角的大小为 . (Ⅲ)用体积法求解:解得,即到平面PAD的距离为19. 在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点. (1)求证:平面PAD; (2)当平面PCD与平面ABCD成多大二面角时, 直线平面PCD?证:(1)取CD中点G,连结EG、FG∵E、F分别是AB、PC的中点,∴EG//AD,FG//PD,∴平面EFG//平面PAD,∴ EF//平面PAD. (2)当平面PCD与平面ABCD成45(角时,直线EF(平面PCD.证明:∵G为CD中点,则EG(CD,∵PA(底面ABCD∴AD是PD在平面ABCD内的射影。 ∵CD(平面ABCD,且CD(AD,故CD(PD .又∵FG∥PD∴FG(CD,故(EGF为平面PCD 与平面ABCD所成二面角的平面角,即(EGF=45(,从而得(ADP=45(, AD=AP.由Rt(PAE(Rt(CBE,得PE=CE.又F是PC的中点,∴EF(PC.由CD(EG,CD(FG,得CD(平面EFG,∴CD(EF,即EF(CD,故EF(平面PCD. 20. 已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC = AD = CD = DE = 2a,AB = a,F为CD的中点. (Ⅰ)求证:AF⊥平面CDE; (Ⅱ)求异面直线AC,BE所成角余弦值; (Ⅲ)求面ACD和面BCE所成二面角的大小.解:(Ⅰ)∵DE⊥平面ACD,AF平面ACD∴DE⊥AF。又∵AC=AD=C,F为CD中点∴AF⊥CD,∴AF⊥面CDE∴AF⊥平面CDE 。 (Ⅱ)∵取DE中点M,连结AM、CM,则四边形AMEB为平行四边形AM//BE,则∠CAM为AC与BE所成的角。在△ACM中,AC=2a由余弦定理得:∴异面直线AC、AE所成的角的余弦值为。 (Ⅲ)延长DA。EB交于点G,连结CG。 因为AB//DE,AB=DE,所以A为GD中点。又因为F为CD中点,所以CG//AF。因为AF⊥平面CDE,所以CG⊥平面CDE。故∠DCE为面ACD和面BCE所成二面角的平面角易求∠DCE=45°。21. 如图,四边形ABCD是正方形,PB⊥平面ABCD,MA//PB,PB=AB=2MA, (Ⅰ)证明:AC//平面PMD; (Ⅱ)求直线BD与平面PCD所成的角的大小; (Ⅲ)求平面PMD与平面ABCD所成的二面角(锐角)的大小。(Ⅰ)证明:如图1,取PD的中点E,连EO,EM。∵EO//PB,EO=PB,MA//PB,MA=PB,∴EO//MA,且EO=MA∴四边形MAOE是平行四边形,∴ME//AC 。又∵AC平面PMD,ME平面PMD,∴AC//平面PMD 。(Ⅱ)如图1,PB⊥平面ABCD,CD平面ABCD, ∴CD⊥PB。又∵CD⊥BC, ∴CD⊥平面PBC。∵CD平面PCD, ∴平面PBC⊥平面PCD。过B作BF⊥PC于F,则BF⊥平面PDC,连DF,则DF为BD在平面PCD上的射影。 ∴∠BDF是直线BD与平面PDC所成的角。 不妨设AB=2,则在Rt△BFD中,, ∴∠BDF=∴直线BD与平面PCD所成的角是 (Ⅲ)解:如图3,分别延长PM,BA,设PM∩BA=G,连DG,则平面PMD∩平面=ABCD=DG过A作AN⊥DG于N,连MN。 ∵PB⊥平面ABCD, ∴MN⊥DG∴∠MNA是平面PMD与平面ABCD所成的二面角的平面角(锐角) 在Rt△MAN中,,∴∠MNA=arctan∴平面PMD与平面ABCD所成的二面角(锐角)大小是arctan 22. 已知斜三棱柱,,,在底面上的射影恰为的中点,又知。(I)求证:平面;(II)求到平面的距离;(III)求二面角的大小。解:(I)因为平面,所以平面平面,又,所以平面,得,又所以平面;(II)因为,所以四边形为 菱形,故,又为中点,知。取中点,则平面,从而面面, 过作于,则面, 在中,,故, 即到平面的距离为。 (III)过作于,连,则, 从而为二面角的平面角, 在中,,所以,在中,, 故二面角的大小为。 解法2:(I)如图,取的中点,则,因为, 所以,又平面, 以为轴建立空间坐标系, 则,,,,,,,,由,知, 又,从而平面; (II)由,得。 设平面的法向量为,,,所以,设,则 所以点到平面的距离。 (III)再设平面的法向量为,,, 所以,设,则, 故,根据法向量的方向, 可知二面角的大小为。创新试题1.如图,正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1. (I)求证:A1C//平面AB1D; (II)求二面角B—AB1—D的大小; (III)求点c到平面AB1D的距离.解法一(I)证明:连接A1B,设A1B∩AB1 = E,连接DE.∵ABC—A1B1C1是正三棱柱,且AA1 = AB,∴四边形A1ABB1是正方形,∴E是A1B的中点,又D是BC的中点,∴DE∥A1C. ∵DE平面AB1D,A1C平面AB1D,∴A1C∥平面AB1D. (II)解:在面ABC内作DF⊥AB于点F,在面A1ABB1内作FG⊥AB1于点G,连接DG.∵平面A1ABB1⊥平面ABC, ∴DF⊥平面A1ABB1,∴FG是DG在平面A1ABB1上的射影, ∵FG⊥AB1, ∴DG⊥AB1∴∠FGD是二面角B—AB1—D的平面角 设A1A = AB = 1,在正△ABC中,DF=在△ABE中,,在Rt△DFG中,,所以,二面角B—AB1—D的大小为 (III)解:∵平面B1BCC1⊥平面ABC,且AD⊥BC,∴AD⊥平面B1BCC1,又AD平面AB1D,∴平面B1BCC1⊥平面AB1D.在平面B1BCC1内作CH⊥B1D交B1D的延长线于点H,则CH的长度就是点C到平面AB1D的距离. 由△CDH∽△B1DB,得即点C到平面AB1D的距离是 解法二:建立空间直角坐标系D—xyz,如图, (I)证明:连接A1B,设A1B∩AB1 = E,连接DE.设A1A = AB = 1,则 , (II)解:, ,设是平面AB1D的法向量,则,故;同理,可求得平面AB1B的法向量是 设二面角B—AB1—D的大小为θ,,∴二面角B—AB1—D的大小为 (III)解由(II)得平面AB1D的法向量为,取其单位法向量∴点C到平面AB1D的距离2. 如图,已知正三棱柱ABC—A1B1C1的各棱长都为a,P为A1B上的点。 (1)试确定的值,使得PC⊥AB; (2)若,求二面角P—AB—C的大小; (3)在(2)条件下,求C1到平面PAC的距离。 2.解析答案:复习建议解法一:(1)当时,PC⊥AB取AB的中点D′,连结CD′、PD′∵△ABC为正三角形, ∴CD′⊥AB。当P为A1B的中点时,PD′//A1A, ∵A1A⊥底面ABC, ∴PD′⊥底面ABC,∴PC⊥AB (2)当时,过P作PD⊥AB于D,如图所示,则PD⊥底在ABC过D作DE⊥AC于E,连结PE,则PE⊥AC∴∠DEP为二面角P—AC—B的平面角。又∵PD//A1A, ∴, ∴∴ 又∵∴ ∴∠PED=60°即二面角P—AC—B的大小为60° (3)设C1到面PAC的距离为d,则∵PD//A1A ∴PD//平面A1C ∴DE即为P点到平面A1C的距离。又PE=∴∴解得 即C1到平面PAC的距离为 解法二:以A为原点,AB为x轴,过A点与AB垂直的直线为y轴,AA1为z轴,建立空间直角坐标系A—xyz,如图所示,则B(a,0,0),A1(0,0,a),C,设(1)由即, ∴P为A1B的中点。即 时,PC⊥AB。 (2)当即 设平面PAC的一个法向量n=则 即取 又平面ABC的一个法向量为n0=(0,0,1)∴∴二面角P—AC—B的大小为180°-120°=60° (3)设C1到平面PAC的距离为d,则即C1到平面PAC的距离为 . http://ensama.5d6d.com/?fromuid=663高中数学公式大全!一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。 证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 四、《数列》 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。 数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换, 取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考: 一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化: 首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。 五、《复数》 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。 代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。 一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。 利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形, 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。 辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭, 两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。 六、《排列、组合、二项式定理》 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。 七、《立体几何》 点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。 垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。 方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。 立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。 异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。 八、《平面解析几何》 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。 笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。 四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。 解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。 数学高考基础知识、常见结论详解 一、集合与简易逻辑: 一、理解集合中的有关概念 (1)集合中元素的特征: 确定性 , 互异性 , 无序性 。 集合元素的互异性:如: , ,求 ; (2)集合与元素的关系用符号 , 表示。 (3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。 (4)集合的表示法: 列举法 , 描述法 , 韦恩图 。 注意:区分集合中元素的形式:如: ; ; ; ; ; ; (5)空集是指不含任何元素的集合。( 、 和 的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。 注意:条件为 ,在讨论的时候不要遗忘了 的情况。 如: ,如果 ,求 的取值。 二、集合间的关系及其运算 (1)符号“ ”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ; 符号“ ”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。 (2) ; ; (3)对于任意集合 ,则: ① ; ; ; ② ; ; ; ; ③ ; ; (4)①若 为偶数,则 ;若 为奇数,则 ; ②若 被3除余0,则 ;若 被3除余1,则 ;若 被3除余2,则 ; 三、集合中元素的个数的计算: (1)若集合 中有 个元素,则集合 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。 (2) 中元素的个数的计算公式为: ; (3)韦恩图的运用: 四、 满足条件 , 满足条件 , 若 ;则 是 的充分非必要条件 ; 若 ;则 是 的必要非充分条件 ; 若 ;则 是 的充要条件 ; 若 ;则 是 的既非充分又非必要条件 ; 五、原命题与逆否命题,否命题与逆命题具有相同的 ; 注意:“若 ,则 ”在解题中的运用, 如:“ ”是“ ”的 条件。 六、反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立, 步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。 矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。 适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。 正面词语 等于 大于 小于 是 都是 至多有一个 否定 正面词语 至少有一个 任意的 所有的 至多有n个 任意两个 否定 二、函数 一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。 函数 的图象与直线 交点的个数为 个。 二、函数的三要素: , , 。 相同函数的判断方法:① ;② (两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法: (2)函数定义域的求法: ① ,则 ; ② 则 ; ③ ,则 ; ④如: ,则 ; ⑤含参问题的定义域要分类讨论; 如:已知函数 的定义域是 ,求 的定义域。 ⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。 (3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式; ②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 求下列函数的值域:① (2种方法); ② (2种方法);③ (2种方法); 三、函数的性质: 函数的单调性、奇偶性、周期性 单调性:定义:注意定义是相对与某个具体的区间而言。 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。 应用:比较大小,证明不等式,解不等式。 奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。 判别方法:定义法, 图像法 ,复合函数法 应用:把函数值进行转化求解。 周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。 其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。 四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。 常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考) 平移变换 y=f(x)→y=f(x+a),y=f(x)+b 注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。 (ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。 对称变换 y=f(x)→y=f(-x),关于y轴对称 y=f(x)→y=-f(x) ,关于x轴对称 y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称 y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数) 伸缩变换:y=f(x)→y=f(ωx), y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。 一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称; 如: 的图象如图,作出下列函数图象: (1) ;(2) ; (3) ;(4) ; (5) ;(6) ; (7) ;(8) ; (9) 。 五、反函数: (1)定义: (2)函数存在反函数的条件: ; (3)互为反函数的定义域与值域的关系: ; (4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。 (5)互为反函数的图象间的关系: ; (6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。 如:求下列函数的反函数: ; ; 七、常用的初等函数: (1)一元一次函数: ,当 时,是增函数;当 时,是减函数; (2)一元二次函数: 一般式: ;对称轴方程是 ;顶点为 ; 两点式: ;对称轴方程是 ;与 轴的交点为 ; 顶点式: ;对称轴方程是 ;顶点为 ; ①一元二次函数的单调性: 当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数; ②二次函数求最值问题:首先要采用配方法,化为 的形式, Ⅰ、若顶点的横坐标在给定的区间上,则 时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得; 时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得; Ⅱ、若顶点的横坐标不在给定的区间上,则 时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得; 时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得; 有三个类型题型: (1)顶点固定,区间也固定。如: (2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。 (3)顶点固定,区间变动,这时要讨论区间中的参数. ③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则: 根的情况 等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根 充要条件 注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。 (3)反比例函数: (4)指数函数: 指数运算法则: ; ; 。 指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和00,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。 ②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。 ③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。 ④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小 二、均值不等式:两个数的算术平均数不小于它们的几何平均数。 若 ,则 (当且仅当 时取等号) 基本变形:① ; ; ②若 ,则 , 基本应用:①放缩,变形; ②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。 当 (常数),当且仅当 时, ; 当 (常数),当且仅当 时, ; 常用的方法为:拆、凑、平方; 如:①函数 的最小值 。 ②若正数 满足 ,则 的最小值 。 三、绝对值不等式: 注意:上述等号“=”成立的条件; 四、常用的基本不等式: (1)设 ,则 (当且仅当 时取等号) (2) (当且仅当 时取等号); (当且仅当 时取等号) (3) ; ; 五、证明不等式常用方法: (1)比较法:作差比较: 作差比较的步骤: ⑴作差:对要比较大小的两个数(或式)作差。 ⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。 ⑶判断差的符号:结合变形的结果及题设条件判断差的符号。 注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。 (2)综合法:由因导果。 (3)分析法:执果索因。基本步骤:要证……只需证……,只需证…… (4)反证法:正难则反。 (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。 放缩法的方法有: ⑴添加或舍去一些项,如: ; ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如: ; ⑷利用常用结论: Ⅰ、 ; Ⅱ、 ; (程度大) Ⅲ、 ; (程度小) (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如: 已知 ,可设 ; 已知 ,可设 ( ); 已知 ,可设 ; 已知 ,可设 ; (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式; 六、不等式的解法: (1)一元一次不等式: Ⅰ、 :⑴若 ,则 ;⑵若 ,则 ; Ⅱ、 :⑴若 ,则 ;⑵若 ,则 ; (2)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对 进行讨论: (5)绝对值不等式:若 ,则 ; ; 注意:(1).几何意义: : ; : ; (2)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有: ⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;①若 则 ;②若 则 ;③若 则 ; (3).通过两边平方去绝对值;需要注意的是不等号两边为非负值。 (4).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。 (6)分式不等式的解法:通解变形为整式不等式; ⑴ ;⑵ ; ⑶ ;⑷ ; (7)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。 (8)解含有参数的不等式: 解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论: ①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性. ②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论. ③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要分 、 、 讨论。 五、数列 本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解. ②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类; ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整 体思想求解. (4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错. 一、基本概念: 1、 数列的定义及表示方法: 2、 数列的项与项数: 3、 有穷数列与无穷数列: 4、 递增(减)、摆动、循环数列: 5、 数列{an}的通项公式an: 6、 数列的前n项和公式Sn: 7、 等差数列、公差d、等差数列的结构: 8、 等比数列、公比q、等比数列的结构: 二、基本公式: 9、一般数列的通项an与前n项和Sn的关系:an= 10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 11、等差数列的前n项和公式:Sn= Sn= Sn= 当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。 12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项,an≠0) 13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式); 当q≠1时,Sn= Sn= 三、有关等差、等比数列的结论 14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。 15、等差数列{an}中,若m+n=p+q,则 16、等比数列{an}中,若m+n=p+q,则 17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。 18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。 19、两个等比数列{an}与{bn}的积、商、倒数组成的数列 {an bn}、 、 仍为等比数列。 20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。 21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。 22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 23、三个数成等比的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 24、{an}为等差数列,则 (c>0)是等比数列。 25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。 26. 在等差数列 中: (1)若项数为 ,则 (2)若数为 则, , 27. 在等比数列 中: (1) 若项数为 ,则 (2)若数为 则, 四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。 28、分组法求数列的和:如an=2n+3n 29、错位相减法求和:如an=(2n-1)2n 30、裂项法求和:如an=1/n(n+1) 31、倒序相加法求和:如an= 32、求数列{an}的最大、最小项的方法: ① an+1-an=…… 如an= -2n2+29n-3 ② (an>0) 如an= ③ an=f(n) 研究函数f(n)的增减性 如an= 33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解: (1)当 >0,d<0时,满足 的项数m使得 取最大值. (2)当 <0,d>0时,满足 的项数m使得 取最小值。 在解含绝对值的数列最值问题时,注意转化思想的应用。 六、平面向量 1.基本概念: 向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。 2. 加法与减法的代数运算: (1) . (2)若a=( ),b=( )则a b=( ). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = - 且有| |-| |≤| |≤| |+| |. 向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律); +0= +(- )=0. 3.实数与向量的积:实数 与向量 的积是一个向量。 (1)| |=| |·| |; (2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0. (3)若 =( ),则 · =( ). 两个向量共线的充要条件: (1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= . (2) 若 =( ),b=( )则 ‖b . 平面向量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2. 4.P分有向线段 所成的比: 设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。 当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0; 分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: . 5. 向量的数量积: (1).向量的夹角: 已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角。 (2).两个向量的数量积: 已知两个非零向量 与b,它们的夹角为 ,则 ·b=| |·|b|cos . 其中|b|cos 称为向量b在 方向上的投影. (3).向量的数量积的性质: 若 =( ),b=( )则e· = ·e=| |cos (e为单位向量); ⊥b ·b=0 ( ,b为非零向量);| |= ; cos = = . (4) .向量的数量积的运算律: ·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c. 6.主要思想与方法: 本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。 七、立体几何 1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 能够用斜二测法作图。 2.空间两条直线的位置关系:平行、相交、异面的概念; 会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。 3.直线与平面 ①位置关系:平行、直线在平面内、直线与平面相交。 ②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。 ③直线与平面垂直的证明方法有哪些? ④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900} ⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线. 4.平面与平面 (1)位置关系:平行、相交,(垂直是相交的一种特殊情况) (2)掌握平面与平面平行的证明方法和性质。 (3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。 (4)两平面间的距离问题→点到面的距离问题→ (5)二面角。二面角的平面交的作法及求法: ①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形; ②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。 ③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法? 具体的公式 http://www.ggjy.net/xspd/xsbk/200408/815.html 高中数学公式大全 http://www.xyjy.cn/Article/UploadFiles/200510/20051013100307519.doc 高中数学常用公式及常用结论 高中数学常用公式及常用结论 高中数学常用公式及常用结论 1. 元素与集合的关系 , . 2.德摩根公式 . 3.包含关系 4.容斥原理 . 5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个. 6.二次函数的解析式的三种形式 (1)一般式 ; (2)顶点式 ; (3)零点式 . 7.解连不等式 常有以下转化形式 . 8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 . 9.闭区间上的二次函数的最值 二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下: (1)当a>0时,若 ,则 ; , , . (2)当a<0时,若 ,则 ,若 ,则 , . 10.一元二次方程的实根分布 依据:若 ,则方程 在区间 内至少有一个实根 . 设 ,则 (1)方程 在区间 内有根的充要条件为 或 ; (2)方程 在区间 内有根的充要条件为 或 或 或 ; (3)方程 在区间 内有根的充要条件为 或 . 高中数学函数知识点梳理.函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.注:如果函数和都是减函数,则在公共定义域内,和函数也是减函数;如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.注:若函数是偶函数,则;若函数是偶函数,则.注:对于函数(),恒成立,则函数的对称轴是函数;两个函数与 的图象关于直线对称.注:若,则函数的图象关于点对称;若,则函数为周期为的周期函数.多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.几个常见的函数方程(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,. 几个函数方程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.分数指数幂 (1)(,且).(2)(,且).根式的性质(1).(2)当为奇数时,;当为偶数时,.有理指数幂的运算性质(1).(2).(3).注:若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式.34.对数的换底公式 (,且,,且, ).推论 (,且,,且,, ).对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2);(3).注:设函数,记.若的定义域为,则,且;若的值域为,则,且.对于的情形,需要单独检验.对数换底不等式及其推论若,,,,则函数当时,在和上为增函数.(2)当时,在和上为减函数.推论:设,,,且,则(1).(2).高中数学常用公式及常用结论1. 元素与集合的关系,.2.德摩根公式 .3.包含关系4.容斥原理. 5.集合的子集个数共有 个;真子集有–1个;非空子集有 –1个;非空的真子集有–2个.6.二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式.7.解连不等式常有以下转化形式.8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在内,等价于,或且,或且.9.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a>0时,若,则;,,.(2)当a<0时,若,则,若,则,.10.一元二次方程的实根分布依据:若,则方程在区间内至少有一个实根 . 设,则(1)方程在区间内有根的充要条件为或;(2)方程在区间内有根的充要条件为或或或;(3)方程在区间内有根的充要条件为或 .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间的子区间(形如,,不同)上含参数的二次不等式(为参数)恒成立的充要条件是.(2)在给定区间的子区间上含参数的二次不等式(为参数)恒成立的充要条件是.(3)恒成立的充要条件是或.12.真值表 pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假 13.常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有()个小于不小于至多有个至少有()个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或14.四种命题的相互关系原命题 互逆 逆命题若p则q 若q则p 互 互 互 为 为 互 否 否 逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p15.充要条件 (1)充分条件:若,则是充分条件.(2)必要条件:若,则是必要条件.(3)充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.16.函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.17.如果函数和都是减函数,则在公共定义域内,和函数也是减函数; 如果函数和在其对应的定义域上都是减函数,则复合函数是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.19.若函数是偶函数,则;若函数是偶函数,则.20.对于函数(),恒成立,则函数的对称轴是函数;两个函数与 的图象关于直线对称.21.若,则函数的图象关于点对称; 若,则函数为周期为的周期函数.22.多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.24.两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.26.互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.28.几个常见的函数方程 (1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,. 29.几个函数方程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.30.分数指数幂 (1)(,且).(2)(,且).31.根式的性质(1).(2)当为奇数时,;当为偶数时,.32.有理指数幂的运算性质(1) .(2) .(3).注: 若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式 .34.对数的换底公式 (,且,,且, ).推论 (,且,,且,, ).35.对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2) ;(3).36.设函数,记.若的定义域为,则,且;若的值域为,则,且.对于的情形,需要单独检验.37. 对数换底不等式及其推广 若,,,,则函数 (1)当时,在和上为增函数., (2)当时,在和上为减函数.推论:设,,,且,则(1).(2).38. 平均增长率的问题如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.39.数列的同项公式与前n项的和的关系( 数列的前n项的和为).40.等差数列的通项公式;其前n项和公式为.41.等比数列的通项公式;其前n项的和公式为或.42.等比差数列:的通项公式为;其前n项和公式为.43.分期付款(按揭贷款) 每次还款元(贷款元,次还清,每期利率为).44.常见三角不等式(1)若,则.(2) 若,则.(3) .45.同角三角函数的基本关系式 ,=,.46.正弦、余弦的诱导公式(奇变偶不变,符号看象限) 47.和角与差角公式 ;;.(平方正弦公式);.=(辅助角所在象限由点的象限决定, ).48.二倍角公式 ...49. 三倍角公式 ...50.三角函数的周期公式 函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期;函数,(A,ω,为常数,且A≠0,ω>0)的周期.51.正弦定理?.52.余弦定理;;.53.面积定理(1)(分别表示a、b、c边上的高).(2).(3).54.三角形内角和定理 在△ABC中,有.55. 简单的三角方程的通解 . ..特别地,有. ..56.最简单的三角不等式及其解集 .. . . ..57.实数与向量的积的运算律设λ、μ为实数,那么(1) 结合律:λ(μa)=(λμ)a;(2)第一分配律:(λ+μ)a=λa+μa;(3)第二分配律:λ(a+b)=λa+λb.58.向量的数量积的运算律:(1) a·b= b·a (交换律);(2)(a)·b= (a·b)=a·b= a·(b);(3)(a+b)·c= a ·c +b·c.59.平面向量基本定理? 如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.60.向量平行的坐标表示?? 设a=,b=,且b0,则ab(b0).53. a与b的数量积(或内积)a·b=|a||b|cosθ. 61. a·b的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.62.平面向量的坐标运算(1)设a=,b=,则a+b=.(2)设a=,b=,则a-b=. (3)设A,B,则.(4)设a=,则a=.(5)设a=,b=,则a·b=.63.两向量的夹角公式(a=,b=).64.平面两点间的距离公式 =(A,B).65.向量的平行与垂直 设a=,b=,且b0,则A||bb=λa .ab(a0)a·b=0.66.线段的定比分公式 ?设,,是线段的分点,是实数,且,则().67.三角形的重心坐标公式 △ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是.68.点的平移公式 .注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.69.“按向量平移”的几个结论(1)点按向量a=平移后得到点.(2) 函数的图象按向量a=平移后得到图象,则的函数解析式为.(3) 图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.(4)曲线:按向量a=平移后得到图象,则的方程为.(5) 向量m=按向量a=平移后得到的向量仍然为m=.70. 三角形五“心”向量形式的充要条件设为所在平面上一点,角所对边长分别为,则(1)为的外心.(2)为的重心.(3)为的垂心.(4)为的内心.(5)为的的旁心.71.常用不等式:(1)(当且仅当a=b时取“=”号).(2)(当且仅当a=b时取“=”号).(3)(4)柯西不等式(5).72.极值定理已知都是正数,则有(1)若积是定值,则当时和有最小值;(2)若和是定值,则当时积有最大值.推广 已知,则有(1)若积是定值,则当最大时,最大;当最小时,最小.(2)若和是定值,则当最大时, 最小;当最小时, 最大.73.一元二次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.;.74.含有绝对值的不等式 当a> 0时,有.或.75.无理不等式(1) .(2).(3).76.指数不等式与对数不等式 (1)当时,; .(2)当时,;77.斜率公式 (、).78.直线的五种方程 (1)点斜式 (直线过点,且斜率为).(2)斜截式 (b为直线在y轴上的截距).(3)两点式 ()(、 ()).(4)截距式 (分别为直线的横、纵截距,)(5)一般式 (其中A、B不同时为0).79.两条直线的平行和垂直 (1)若,①;②.(2)若,,且A1、A2、B1、B2都不为零,①;②;80.夹角公式 (1).(,,)(2).(,,).直线时,直线l1与l2的夹角是.81. 到的角公式 (1).(,,)(2).(,,).直线时,直线l1到l2的角是.82.四种常用直线系方程 (1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数.(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中λ是待定的系数.(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程.与直线平行的直线系方程是(),λ是参变量.(4)垂直直线系方程:与直线 (A≠0,B≠0)垂直的直线系方程是,λ是参变量.83.点到直线的距离 (点,直线:).84. 或所表示的平面区域设直线,则或所表示的平面区域是:若,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.若,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.85. 或所表示的平面区域设曲线(),则或所表示的平面区域是:所表示的平面区域上下两部分;所表示的平面区域上下两部分. 86. 圆的四种方程(1)圆的标准方程 .(2)圆的一般方程 (>0).(3)圆的参数方程 .(4)圆的直径式方程 (圆的直径的端点是、).87. 圆系方程(1)过点,的圆系方程是,其中是直线的方程,λ是待定的系数.(2)过直线:与圆:的交点的圆系方程是,λ是待定的系数.(3) 过圆:与圆:的交点的圆系方程是,λ是待定的系数.88.点与圆的位置关系点与圆的位置关系有三种若,则点在圆外;点在圆上;点在圆内.89.直线与圆的位置关系直线与圆的位置关系有三种:;;.其中.90.两圆位置关系的判定方法设两圆圆心分别为O1,O2,半径分别为r1,r2,;;;;.91.圆的切线方程(1)已知圆.①若已知切点在圆上,则切线只有一条,其方程是 .当圆外时, 表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.③斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线.(2)已知圆.①过圆上的点的切线方程为;②斜率为的圆的切线方程为.92.椭圆的参数方程是.93.椭圆焦半径公式 ,.94.椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.95. 椭圆的切线方程 (1)椭圆上一点处的切线方程是. (2)过椭圆外一点所引两条切线的切点弦方程是. (3)椭圆与直线相切的条件是.96.双曲线的焦半径公式,.97.双曲线的内外部(1)点在双曲线的内部.(2)点在双曲线的外部.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:. (2)若渐近线方程为双曲线可设为. (3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).99. 双曲线的切线方程 (1)双曲线上一点处的切线方程是. (2)过双曲线外一点所引两条切线的切点弦方程是. (3)双曲线与直线相切的条件是.100. 抛物线的焦半径公式抛物线焦半径.过焦点弦长.101.抛物线上的动点可设为P或 P,其中 .102.二次函数的图象是抛物线:(1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是.103.抛物线的内外部(1)点在抛物线的内部.点在抛物线的外部.(2)点在抛物线的内部.点在抛物线的外部.(3)点在抛物线的内部.点在抛物线的外部.(4) 点在抛物线的内部.点在抛物线的外部.104. 抛物线的切线方程(1)抛物线上一点处的切线方程是. (2)过抛物线外一点所引两条切线的切点弦方程是. (3)抛物线与直线相切的条件是.105.两个常见的曲线系方程(1)过曲线,的交点的曲线系方程是(为参数).(2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆; 当时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 或(弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率). 107.圆锥曲线的两类对称问题(1)曲线关于点成中心对称的曲线是.(2)曲线关于直线成轴对称的曲线是.108.“四线”一方程 对于一般的二次曲线,用代,用代,用代,用代,用代即得方程,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109.证明直线与直线的平行的思考途径(1)转化为判定共面二直线无交点;(2)转化为二直线同与第三条直线平行;(3)转化为线面平行;(4)转化为线面垂直;(5)转化为面面平行.110.证明直线与平面的平行的思考途径(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行.111.证明平面与平面平行的思考途径(1)转化为判定二平面无公共点;(2)转化为线面平行;(3)转化为线面垂直.112.证明直线与直线的垂直的思考途径(1)转化为相交垂直;(2)转化为线面垂直;(3)转化为线与另一线的射影垂直;(4)转化为线与形成射影的斜线垂直.113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直;(3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面;(5)转化为该直线与两个垂直平面的交线垂直.114.证明平面与平面的垂直的思考途径(1)转化为判断二面角是直二面角;(2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律(1)加法交换律:a+b=b+a.(2)加法结合律:(a+b)+c=a+(b+c).(3)数乘分配律:λ(a+b)=λa+λb.116.平面向量加法的平行四边形法则向空间的推广始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a、b(b≠0 ),a∥b存在实数λ使a=λb.三点共线.、共线且不共线且不共线.118.共面向量定理 向量p与两个不共线的向量a、b共面的存在实数对,使.推论 空间一点P位于平面MAB内的存在有序实数对,使,或对空间任一定点O,有序实数对,使.119.对空间任一点和不共线的三点A、B、C,满足(),则当时,对于空间任一点,总有P、A、B、C四点共面;当时,若平面ABC,则P、A、B、C四点共面;若平面ABC,则P、A、B、C四点不共面.四点共面与、共面(平面ABC).120.空间向量基本定理 如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc.推论 设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使.121.射影公式已知向量=a和轴,e是上与同方向的单位向量.作A点在上的射影,作B点在上的射影,则〈a,e〉=a·e122.向量的直角坐标运算设a=,b=则(1)a+b=;(2)a-b=;(3)λa= (λ∈R);(4)a·b=;123.设A,B,则= .124.空间的线线平行或垂直设,,则;.125.夹角公式 设a=,b=,则cos〈a,b〉=.推论 ,此即三维柯西不等式.126. 四面体的对棱所成的角四面体中, 与所成的角为,则.127.异面直线所成角=(其中()为异面直线所成角,分别表示异面直线的方向向量)128.直线与平面所成角(为平面的法向量).129.若所在平面若与过若的平面成的角,另两边,与平面成的角分别是、,为的两个内角,则.特别地,当时,有.130.若所在平面若与过若的平面成的角,另两边,与平面成的角分别是、,为的两个内角,则.特别地,当时,有.131.二面角的平面角或(,为平面,的法向量).132.三余弦定理设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO与AC所成的角为.则.133. 三射线定理若夹在平面角为的二面角间的线段与二面角的两个半平面所成的角是,,与二面角的棱所成的角是θ,则有 ;(当且仅当时等号成立).134.空间两点间的距离公式 若A,B,则 =.135.点到直线距离(点在直线上,直线的方向向量a=,向量b=).136.异面直线间的距离 (是两异面直线,其公垂向量为,分别是上任一点,为间的距离).137.点到平面的距离 (为平面的法向量,是经过面的一条斜线,).138.异面直线上两点距离公式 ..(). (两条异面直线a、b所成的角为θ,其公垂线段的长度为h.在直线a、b上分别取两点E、F,,,). 139.三个向量和的平方公式 140. 长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则有.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理 .(平面多边形及其射影的面积分别是、,它们所在平面所成锐二面角的为).142. 斜棱柱的直截面已知斜棱柱的侧棱长是,侧面积和体积分别是和,它的直截面的周长和面积分别是和,则①.②.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行.144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式) (简单多面体的顶点数V、棱数E和面数F).(1)=各面多边形边数和的一半.特别地,若每个面的边数为的多边形,则面数F与棱数E的关系:;(2)若每个顶点引出的棱数为,则顶点数V与棱数E的关系:.146.球的半径是R,则其体积,其表面积.147.球的组合体 (1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体: 棱长为的正四面体的内切球的半径为,外接球的半径为.148.柱体、锥体的体积(是柱体的底面积、是柱体的高).(是锥体的底面积、是锥体的高).149.分类计数原理(加法原理).150.分步计数原理(乘法原理).151.排列数公式 ==.(,∈N*,且).注:规定.152.排列恒等式 (1);(2);(3); (4);(5).(6) .153.组合数公式 ===(∈N*,,且).154.组合数的两个性质(1)= ;(2) +=.注:规定. 155.组合恒等式(1);(2);(3); (4)=;(5).(6).(7). (8).(9).(10).156.排列数与组合数的关系 .157.单条件排列以下各条的大前提是从个元素中取个元素的排列.(1)“在位”与“不在位”①某(特)元必在某位有种;②某(特)元不在某位有(补集思想)(着眼位置)(着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:个元在固定位的排列有种.②浮动紧贴:个元素的全排列把k个元排在一起的排法有种.注:此类问题常用捆绑法;③插空:两组元素分别有k、h个(),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有种.(3)两组元素各相同的插空 个大球个小球排成一列,小球必分开,问有多少种排法?当时,无解;当时,有种排法.(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为.158.分配问题(1)(平均分组有归属问题)将相异的、个物件等分给个人,各得件,其分配方法数共有.(2)(平均分组无归属问题)将相异的·个物体等分为无记号或无顺序的堆,其分配方法数共有.(3)(非平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,,…,件,且,,…,这个数彼此不相等,则其分配方法数共有.(4)(非完全平均分组有归属问题)将相异的个物体分给个人,物件必须被分完,分别得到,,…,件,且,,…,这个数中分别有a、b、c、…个相等,则其分配方法数有 .(5)(非平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数彼此不相等,则其分配方法数有.(6)(非完全平均分组无归属问题)将相异的个物体分为任意的,,…,件无记号的堆,且,,…,这个数中分别有a、b、c、…个相等,则其分配方法数有.(7)(限定分组有归属问题)将相异的()个物体分给甲、乙、丙,……等个人,物体必须被分完,如果指定甲得件,乙得件,丙得件,…时,则无论,,…,等个数是否全相异或不全相异其分配方法数恒有.159.“错位问题”及其推广贝努利装错笺问题:信封信与个信封全部错位的组合数为.推广: 个元素与个位置,其中至少有个元素错位的不同组合总数为.160.不定方程的解的个数(1)方程()的正整数解有个.(2) 方程()的非负整数解有 个.(3) 方程()满足条件(,)的非负整数解有个.(4) 方程()满足条件(,)的正整数解有个.161.二项式定理 ;二项展开式的通项公式.162.等可能性事件的概率.163.互斥事件A,B分别发生的概率的和P(A+B)=P(A)+P(B).164.个互斥事件分别发生的概率的和P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).165.独立事件A,B同时发生的概率P(A·B)= P(A)·P(B).166.n个独立事件同时发生的概率 P(A1· A2·…· An)=P(A1)· P(A2)·…· P(An).167.n次独立重复试验中某事件恰好发生k次的概率168.离散型随机变量的分布列的两个性质(1);(2).169.数学期望170.数学期望的性质(1).(2)若~,则.(3) 若服从几何分布,且,则.171.方差172.标准差=.173.方差的性质(1);(2)若~,则.(3) 若服从几何分布,且,则.174.方差与期望的关系.175.正态分布密度函数,式中的实数μ,(>0)是参数,分别表示个体的平均数与标准差.176.标准正态分布密度函数.177.对于,取值小于x的概率..178.回归直线方程 ,其中.179.相关系数 .|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.180.特殊数列的极限 (1).(2).(3)(无穷等比数列 ()的和).181. 函数的极限定理.182.函数的夹逼性定理 如果函数f(x),g(x),h(x)在点x0的附近满足:(1);(2)(常数),则.本定理对于单侧极限和的情况仍然成立.183.几个常用极限(1),();(2),.184.两个重要的极限 (1);(2)(e=2.718281845…).185.函数极限的四则运算法则 若,,则(1);(2);(3).186.数列极限的四则运算法则 若,则(1);(2);(3)(4)( c是常数).187.在处的导数(或变化率或微商).188.瞬时速度.189.瞬时加速度.190.在的导数.191. 函数在点处的导数的几何意义函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.192.几种常见函数的导数(1) (C为常数).(2) .(3) .(4) . (5) ;.(6) ; .193.导数的运算法则(1).(2).(3).194.复合函数的求导法则 设函数在点处有导数,函数在点处的对应点U处有导数,则复合函数在点处有导数,且,或写作.195.常用的近似计算公式(当充小时)(1);;(2); ;(3);(4);(5)(为弧度);(6)(为弧度);(7)(为弧度)196.判别是极大(小)值的方法当函数在点处连续时,(1)如果在附近的左侧,右侧,则是极大值;(2)如果在附近的左侧,右侧,则是极小值.197.复数的相等.()198.复数的模(或绝对值)==.199.复数的四则运算法则 (1);(2);(3);(4).200.复数的乘法的运算律对于任何,有交换律:.结合律:.分配律: .201.复平面上的两点间的距离公式 (,). 202.向量的垂直 非零复数,对应的向量分别是,,则 的实部为零为纯虚数 (λ为非零实数).203.实系数一元二次方程的解 实系数一元二次方程,①若,则;②若,则;③若,它在实数集内没有实数根;在复数集内有且仅有两个共轭复数根.高中数学知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 3. 注意下列性质: (3)德摩根定律: 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? 10. 如何求复合函数的定义域? 义域是_____________。 11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (①反解x;②互换x、y;③注明定义域) 13. 反函数的性质有哪些? ①互为反函数的图象关于直线y=x对称; ②保存了原来函数的单调性、奇函数性; 14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性? ∴……) 15. 如何利用导数判断函数的单调性? 值是( ) A. 0 B. 1 C. 2 D. 3 ∴a的最大值为3) 16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 注意如下结论: (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。 17. 你熟悉周期函数的定义吗? 函数,T是一个周期。) 如: 18. 你掌握常用的图象变换了吗? 注意如下“翻折”变换: 19. 你熟练掌握常用函数的图象和性质了吗? 的双曲线。 应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程 ②求闭区间[m,n]上的最值。 ③求区间定(动),对称轴动(定)的最值问题。 ④一元二次方程根的分布问题。 由图象记性质! (注意底数的限定!) 利用它的单调性求最值与利用均值不等式求最值的区别是什么? 20. 你在基本运算上常出现错误吗? 21. 如何解抽象函数问题? (赋值法、结构变换法) 22. 掌握求函数值域的常用方法了吗? (二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。) 如求下列函数的最值: 23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗? 24. 熟记三角函数的定义,单位圆中三角函数线的定义 25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗? (x,y)作图象。 27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。 28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗? 29. 熟练掌握三角函数图象变换了吗? (平移变换、伸缩变换) 平移公式: 图象? 30. 熟练掌握同角三角函数关系和诱导公式了吗? “奇”、“偶”指k取奇、偶数。 A. 正值或负值 B. 负值 C. 非负值 D. 正值 31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系: 应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。) 具体方法: (2)名的变换:化弦或化切 (3)次数的变换:升、降幂公式 (4)形的变换:统一函数形式,注意运用代数运算。 32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形? (应用:已知两边一夹角求第三边;已知三边求角。) 33. 用反三角函数表示角时要注意角的范围。 34. 不等式的性质有哪些? 答案:C 35. 利用均值不等式: 值?(一正、二定、三相等) 注意如下结论: 36. 不等式证明的基本方法都掌握了吗? (比较法、分析法、综合法、数学归纳法等) 并注意简单放缩法的应用。 (移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。) 38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始 39. 解含有参数的不等式要注意对字母参数的讨论 40. 对含有两个绝对值的不等式如何去解? (找零点,分段讨论,去掉绝对值符号,最后取各段的并集。) 证明: (按不等号方向放缩) 42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题) 43. 等差数列的定义与性质 0的二次函数) 项,即: 44. 等比数列的定义与性质 46. 你熟悉求数列通项公式的常用方法吗? 例如:(1)求差(商)法 解: [练习] (2)叠乘法 解: (3)等差型递推公式 [练习] (4)等比型递推公式 [练习] (5)倒数法 47. 你熟悉求数列前n项和的常用方法吗? 例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 解: [练习] (2)错位相减法: (3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。 [练习] 48. 你知道储蓄、贷款问题吗? △零存整取储蓄(单利)本利和计算模型: 若每期存入本金p元,每期利率为r,n期后,本利和为: △若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类) 若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足 p——贷款数,r——利率,n——还款期数 49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。 (2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一 (3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不 50. 解排列与组合问题的规律是: 相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。 如:学号为1,2,3,4的四名学生的考试成绩 则这四位同学考试成绩的所有可能情况是( ) A. 24 B. 15 C. 12 D. 10 解析:可分成两类: (2)中间两个分数相等 相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。 ∴共有5+10=15(种)情况 51. 二项式定理 性质: (3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第 表示) 52. 你对随机事件之间的关系熟悉吗? 的和(并)。 (5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。 (6)对立事件(互逆事件): (7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。 53. 对某一事件概率的求法: 分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即 (5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生 如:设10件产品中有4件次品,6件正品,求下列事件的概率。 (1)从中任取2件都是次品; (2)从中任取5件恰有2件次品; (3)从中有放回地任取3件至少有2件次品; 解析:有放回地抽取3次(每次抽1件),∴n=103 而至少有2件次品为“恰有2次品”和“三件都是次品” (4)从中依次取5件恰有2件次品。 解析:∵一件一件抽取(有顺序) 分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。 54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。 55. 对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。 要熟悉样本频率直方图的作法: (2)决定组距和组数; (3)决定分点; (4)列频率分布表; (5)画频率直方图。 如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。 56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 (7)向量的加、减法如图: (8)平面向量基本定理(向量的分解定理) 的一组基底。 (9)向量的坐标表示 表示。 57. 平面向量的数量积 数量积的几何意义: (2)数量积的运算法则 [练习] 答案: 答案:2 答案: 58. 线段的定比分点 ※. 你能分清三角形的重心、垂心、外心、内心及其性质吗? 59. 立体几何中平行、垂直关系证明的思路清楚吗? 平行垂直的证明主要利用线面关系的转化: 线面平行的判定: 线面平行的性质: 三垂线定理(及逆定理): 线面垂直: 面面垂直: 60. 三类角的定义及求法 (1)异面直线所成的角θ,0°<θ≤90° (2)直线与平面所成的角θ,0°≤θ≤90° (三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。) 三类角的求法: ①找出或作出有关的角。 ②证明其符合定义,并指出所求作的角。 ③计算大小(解直角三角形,或用余弦定理)。[练习] (1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。 (2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。 ①求BD1和底面ABCD所成的角; ②求异面直线BD1和AD所成的角; ③求二面角C1—BD1—B1的大小。 (3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。 (∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……) 61. 空间有几种距离?如何求距离? 点与点,点与线,点与面,线与线,线与面,面与面间距离。 将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。 如:正方形ABCD—A1B1C1D1中,棱长为a,则: (1)点C到面AB1C1的距离为___________; (2)点B到面ACB1的距离为____________; (3)直线A1D1到面AB1C1的距离为____________; (4)面AB1C与面A1DC1的距离为____________; (5)点B到直线A1C1的距离为_____________。 62. 你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质? 正棱柱——底面为正多边形的直棱柱 正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。 正棱锥的计算集中在四个直角三角形中: 它们各包含哪些元素? 63. 球有哪些性质? (2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角! (3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。 (5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。 积为( ) 答案:A 64. 熟记下列公式了吗? (2)直线方程: 65. 如何判断两直线平行、垂直? 66. 怎样判断直线l与圆C的位置关系? 圆心到直线的距离与圆的半径比较。 直线与圆相交时,注意利用圆的“垂径定理”。 67. 怎样判断直线与圆锥曲线的位置? 68. 分清圆锥曲线的定义 70. 在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。) 71. 会用定义求圆锥曲线的焦半径吗? 如: 通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。 72. 有关中点弦问题可考虑用“代点法”。 答案: 73. 如何求解“对称”问题? (1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。 75. 求轨迹方程的常用方法有哪些?注意讨论范围。 (直接法、定义法、转移法、参数法) 76. 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值高中数学知识易错点梳理一、集合、简易逻辑、函数研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合B={0,|x|,y},且A=B,则x+y= 研究集合,首先必须弄清代表元素,才能理解集合的意义。已知集合M={y|y=x2 ,x∈R},N={y|y=x2+1,x∈R},求M∩N;与集合M={(x,y)|y=x2 ,x∈R},N={(x,y)|y=x2+1,x∈R}求M∩N的区别。集合 A、B,时,你是否注意到“极端”情况:或;求集合的子集时是否忘记. 例如:对一切恒成立,求a的取植范围,你讨论了a=2的情况了吗? 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为 如满足条件的集合M共有多少个 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 两集合之间的关系。(CUA)∩( CU B) = CU(A∪B) (CUA)∪( CUB) = CU(A∩B);;8、可以判断真假的语句叫做命题.逻辑连接词有“或”、“且”和“非”.p、q形式的复合命题的真值表:pqP且qP或q真真真真真假假真假真假真假假假假命题的四种形式及其相互关系 互 逆互 互 互 为 互 否 逆 逆 否 否 否 否 否 否 互 逆 原命题与逆否命题同真同假;逆命题与否命题同真同假.10、你对映射的概念了解了吗?映射f:A→B中,A中元素的任意性和B中与它对应元素的唯一性,哪几种对应能够成映射?11、函数的几个重要性质: ①如果函数对于一切,都有或f(2a-x)=f(x),那么函数的图象关于直线对称. ②函数与函数的图象关于直线对称; 函数与函数的图象关于直线对称; 函数与函数的图象关于坐标原点对称. ③若奇函数在区间上是递增函数,则在区间上也是递增函数. ④若偶函数在区间上是递增函数,则在区间上是递减函数. ⑤函数的图象是把函数的图象沿x轴向左平移a个单位得到的;函数(的图象是把函数的图象沿x轴向右平移个单位得到的;函数+a的图象是把函数助图象沿y轴向上平移a个单位得到的;函数+a的图象是把函数助图象沿y轴向下平移个单位得到的. 12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗?13、求函数的定义域的常见类型记住了吗?函数y=的定义域是 ;复合函数的定义域弄清了吗?函数的定义域是[0,1],求的定义域. 函数的定义域是[], 求函数的定义域14、含参的二次函数的值域、最值要记得讨论。若函数y=asin2x+2cosx-a-2(a∈R)的最小值为m, 求m的表达15、函数与其反函数之间的一个有用的结论:设函数y=f(x)的定义域为A,值域为C,则①若a∈A,则a=f-1 [f(a)]; 若b∈C,则b=f[f-1 (b)]; ②若p∈C,求f-1 (p)就是令p=f(x),求x.(x∈A) 即互为反函数的两个函数的图象关于直线y=x对称,16、互为反函数的两个函数具有相同的单调性;原函数在区间上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.17、 判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗? 在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数;18、根据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数单调性的一种重要方法。你知道函数的单调区间吗?(该函数在和上单调递增;在和上单调递减)这可是一个应用广泛的函数!解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀.对数的换底公式及它的变形,你掌握了吗?()你还记得对数恒等式吗?() “实系数一元二次方程有实数解”转化为“”,你是否注意到必须;当a=0时,“方程有解”不能转化为.若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?二、三角、不等式三角公式记住了吗?两角和与差的公式________________; 二倍角公式:_________________ 万能公式 ______________正切半角公式____________________;解题时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次, 在解三角问题时,你注意到正切函数、余切函数的定义域了吗?正切函数在整个定义域内是否为单调函数?你注意到正弦函数、余弦函数的有界性了吗?在三角中,你知道1等于什么吗?( 这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用.(还有同角关系公式:商的关系,倒数关系,平方关系;诱导公试:奇变偶不变,符号看象限)在三角的恒等变形中,要特别注意角的各种变换.(如 等)你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来)你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次);你还记得降幂公式吗?cos2x=(1+cos2x)/2;sin2x=(1-cos2x)/2你还记得某些特殊角的三角函数值吗?()你还记得在弧度制下弧长公式和扇形面积公式吗?() 辅助角公式:(其中角所在的象限由a, b 的符号确定,角的值由确定)在求最值、化简时起着重要作用.三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴,取最值时的x值的集合吗?(别忘了kZ)三角函数性质要记牢。函数y=k的图象及性质: 振幅|A|,周期T=, 若x=x0为此函数的对称轴,则x0是使y取到最值的点,反之亦然,使y取到最值的x的集合为——————————, 当时函数的增区间为————— ,减区间为—————;当时要利用诱导公式将变为大于零后再用上面的结论。五点作图法:令依次为 求出x与y,依点作图 三角函数图像变换还记得吗?平移公式 (1)如果点 P(x,y)按向量 平移至P′(x′,y′),则 (2) 曲线f(x,y)=0沿向量平移后的方程为f(x-h,y-k)=0有关斜三角形的几个结论:(1) 正弦定理: (2) 余弦定理: (3)面积公式在用反三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围及意义? ①异面直线所成的角、直线与平面所成的角、向量的夹角的取值范围依次是. ②直线的倾斜角、到的角、与的夹角的取值范围依次是. ③反正弦、反余弦、反正切函数的取值范围分别是. 同向不等式能相减,相除吗?不等式的解集的规范书写格式是什么?(一般要写成集合的表达式)分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,奇穿偶回)解指对不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零.)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论)利用重要不等式 以及变式等求函数的最值时,你是否注意到a,b(或a ,b非负),且“等号成立”时的条件,积ab或和a+b其中之一应是定值?(一正二定三相等)(当且仅当时,取等号); a、b、cR,(当且仅当时,取等号);在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解集是…….解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”对于不等式恒成立问题,常用的处理方式?(转化为最值问题)三、数列等差数列中的重要性质:(1)若,则;(2);(3)若三数成等差数列,则可设为a-d、a、a+d;若为四数则可设为a-、a-、a+、a+;(4)在等差数列中,求Sn 的最大(小)值,其思路是找出某一项,使这项及它前面的项皆取正(负)值或0,而它后面各项皆取负(正)值,则从第一项起到该项的各项的和为最大(小).即:当a1 >0,d<0,解不等式组 an ≥0 an+1 ≤0 可得Sn 达最大值时的n的值;当a1 <0,d>0,解不等式组 an ≤0 an+1 ≥0 可得Sn 达最小值时的n的值;(5).若an ,bn 是等差数列,Sn ,Tn 分别为an ,bn 的前n项和,则。.(6).若{}是等差数列,则{}是等比数列,若{}是等比数列且,则{}是等差数列.等比数列中的重要性质:(1)若,则;(2),,成等比数列你是否注意到在应用等比数列求前n项和时,需要分类讨论.(时,;时,)等比数列的一个求和公式:设等比数列的前n项和为,公比为, 则.等差数列的一个性质:设是数列的前n项和,为等差数列的充要条件是 (a, b为常数)其公差是2a.你知道怎样的数列求和时要用“错位相减”法吗?(若,其中是等差数列,是等比数列,求的前n项的和)用求数列的通项公式时,你注意到了吗?你还记得裂项求和吗?(如 .)四、排列组合、二项式定理解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法,还记得什么时候用隔板法?排列数公式是: 组合数公式是: 排列数与组合数的关系是:组合数性质:= += = 二项式定理: 二项展开式的通项公式:五、立体几何有关平行垂直的证明主要利用线面关系的转化:线//线线//面面//面,线⊥线线⊥面面⊥面,垂直常用向量来证。作出二面角的平面角主要方法是什么?(定义法、三垂线法)三垂线法:一定平面,二作垂线,三作斜线,射影可见.二面角的求法主要有:解直角三角形、余弦定理、射影面积法、法向量求点到面的距离的常规方法是什么?(直接法、等体积变换法、法向量法)你记住三垂线定理及其逆定理了吗?有关球面上两点的球面距离的求法主要是找球心角,常常与经度及纬度联系在一起,你还记得经度及纬度的含义吗?(经度是面面角;纬度是线面角)你还记得简单多面体的欧拉公式吗?(V+F-E=2,其中V为顶点数,E是棱数,F为面数),棱的两种算法,你还记得吗?(①多面体每面为n边形,则E=;②多面体每个顶点出发有m条棱,则E=)六、解析几何设直线方程时,一般可设直线的斜率为k,你是否注意到直线垂直于x轴时,斜率k不存在的情况?(例如:一条直线经过点,且被圆截得的弦长为8,求此弦所在直线的方程。该题就要注意,不要漏掉x+3=0这一解.)定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清)线段的定比分点坐标公式设P(x,y) ,P1(x1,y1) ,P2(x2,y2) ,且 ,则 中点坐标公式 若,则△ABC的重心G的坐标是。在利用定比分点解题时,你注意到了吗?在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线)对不重合的两条直线,,有; .直线在坐标轴上的截矩可正,可负,也可为0.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当 a=0时,直线y=kx在两条坐标轴上的截距都是0,也是截距相等.两直线和的距离公式d=——————————直线的方向向量还记得吗?直线的方向向量与直线的斜率有何关系?当直线L的方向向量为=(x0,y0)时,直线斜率k=———————;当直线斜率为k时,直线的方向向量=—————到角公式及夹角公式———————,何时用?处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式. 一般来说,前者更简捷.处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系.在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形并且要更多联想到圆的几何性质.在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?两个定义常常结伴而用,有时对我们解题有很大的帮助,有关过焦点弦问题用第二定义可能更为方便。(焦半径公式:椭圆:|PF1|=———— ;|PF2|=———— ;双曲线:|PF1|=———— ;|PF2|=———— (其中F1为左焦点F2为右焦点 );抛物线:|PF|=|x0|+)在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).椭圆中,a,b,c的关系为————;离心率e=————;准线方程为————;焦点到相应准线距离为———— 双曲线中,a,b,c的关系为————;离心率e=————;准线方程为————;焦点到相应准线距离为———— 通径是抛物线的所有焦点弦中最短的弦.你知道吗?解析几何中解题关键就是把题目中的几何条件代数化,特别是一些很不起眼的条件,有时起着关键的作用:如:点在曲线上、相交、共线、以某线段为直径的圆经过某点、夹角、垂直、平行、中点、角平分线、中点弦问题等。圆和椭圆参数方程不要忘,有时在解决问题时很方便。数形结合是解决解几问题的重要思想方法,要记得画图分析哟!你注意到了吗?求轨迹与求轨迹方程有区别的。求轨迹方程可别忘了寻求范围呀!在解决有关线性规划应用问题时,有以下几个步骤:先找约束条件,作出可行域,明确目标函数,其中关键就是要搞清目标函数的几何意义,找可行域时要注意把直线方程中的y的系数变为正值。如:求2<5a-2b<4,-3<3a+b<3求a+b的取值范围,但也可以不用线性规划。七、向量两向量平行或共线的条件,它们两种形式表示,你还记得吗?注意是向量平行的充分不必要条件。(定义及坐标表示)向量可以解决有关夹角、距离、平行和垂直等问题,要记住以下公式:||2=·,cosθ=利用向量平行或垂直来解决解析几何中的平行和垂直问题可以不用讨论斜率不存在的情况,要注意是向量夹角为钝角的必要而非充分条件。向量的运算要和实数运算有区别:如两边不能约去一个向量,向量的乘法不满足结合律,即,切记两向量不能相除。你还记得向量基本定理的几何意义吗?它的实质就是平面内的任何向量都可以用平面内任意不共线的两个向量线性表示,它的系数的含义与求法你清楚吗?一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用,对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以 一个向量,但不能两边同除以一个向量。 向量的直角坐标运算 设,则设A=, B=,则- = 八、导数导数的几何意义即曲线在该点处的切线的斜率,学会定义的多种变形。几个重要函数的导数:①,(C为常数)②导数的四运算法则利用导数可以证明或判断函数的单调性,注意当f ’(x)≥0或f ’(x)≤0,带上等号。(x0)=0是函数f(x)在x0处取得极值的非充分非必要条件,f(x)在x0处取得极值的充分要条件是什么?利用导数求最值的步骤:(1)求导数(2)求方程=0的根(3)计算极值及端点函数值的大小(4)根据上述值的大小,确定最大值与最小值.求函数极值的方法:先找定义域,再求导,找出定义域的分界点,根据单调性求出极值。告诉函数的极值这一条件,相当于给出了两个条件:①函数在此点导数值为零,②函数在此点的值为定值。 九、概率统计有关某一事件概率的求法:把所求的事件转化为等可能事件的概率(常常采用排列组合的知识),转化为若干个互斥事件中有一个发生的概率,利用对立事件的概率,转化为相互独立事件同时发生的概率,看作某一事件在n次实验中恰有k次发生的概率,但要注意公式的使用条件。1)若事件A、B为互斥事件,则P(A+B)=P(A)+P(B)(2)若事件A、B为相互独立事件,则P(A·B)=P(A)·P(B)(3)若事件A、B为对立事件,则P(A)+P(B)=1 一般地,(4)如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事恰好发生K次的概率 抽样方法主要有:简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;系统抽样,常常用于总体个数较多时,它的主要特征就是均衡成若干部分,每一部分只取一个;分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异。它们的共同特征是每个个体被抽到的概率相等。用总体估计样本的方法就是把样本的频率作为总体的概率。十、解题方法和技巧总体应试策略:先易后难,一般先作选择题,再作填空题,最后作大题,选择题力保速度和准确度为后面大题节约出时间,但准确度是前提,对于填空题,看上去没有思路或计算太复杂可以放弃,对于大题,尽可能不留空白,把题目中的条件转化代数都有可能得分,在考试中学会放弃,摆脱一个题目无休止的纠缠,给自己营造一个良好的心理环境,这是考试成功的重要保证。解答选择题的特殊方法是什么?(顺推法,估算法,特例法,特征分析法,直观选择法,逆推验证法、数形结合法等等)解答填空题时应注意什么?(特殊化,图解,等价变形)解答应用型问题时,最基本要求是什么?(审题、找准题目中的关键词,设未知数、列出函数关系式、代入初始条件、注明单位、答)解答开放型问题时,需要思维广阔全面,知识纵横联系.解答信息型问题时,透彻理解问题中的新信息,这是准确解题的前提.解答多参型问题时,关键在于恰当地引出参变量, 想方设法摆脱参变量的困绕.这当中,参变量的分离、集中、消去、代换以及反客为主等策略,似乎是解答这类问题的通性通法.学会跳步得分技巧,第一问不会,第二问也可以作,用到第一问就直接用第一问的结论即可,要学会用“由已知得”“由题意得”“由平面几何知识得”等语言来连接,一旦你想来了,可在后面写上“补证”即可。 展开更多...... 收起↑ 资源列表 2010年高考数学压轴题跟踪演练系列三.doc 2010年高考数学复习重点知识点90条.doc 立体几何题型与方法(理科).doc 高中数学公式大全.doc 高中数学函数知识点梳理.doc 高中数学常用公式及常用结论.doc