资源简介 隆德二中导学稿◆九年级数学上◆ 课题 :§2.12二次函数复习【学前准备】1. 二次函数的图象和性质>0<0图 象开 口[21世纪教育网对 称 轴顶点坐标最 值当x= 时,y有最 值当x= ,y有最 值增减性[在对称轴左侧[来源y随x的增大而 [21世纪教育网[21世纪教育网y 随x的增大而 在对称轴右侧y随x的增大而 y随x的增大而 2. 二次函数用配方法可化成的形式,其中 = , = .例1(2010山东)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?例2(2010年浙江)如图,在一块正方形ABCD木板上要贴三种不同的墙纸,正方形EFCG部分贴A型墙纸,△ABE部分贴B型墙纸,其余部分贴C型墙纸。A型、B型、C型三种墙纸的单价分别为每平方60元、80元、40元。探究1:如果木板边长为2米,FC=1米,则一块木板用墙纸的费用需 元;探究2:如果木板边长为1米,求一块木板需用墙纸的最省费用;探究3:设木板的边长为a(a为整数),当正方形EFCG的边长为多少时?墙纸费用最省;如要用这样的多块木板贴一堵墙(7×3平方米)进行装饰,要求每块木板A型的墙纸不超过1平方米,且尽量不浪费材料,则需要这样的木板 块。一、选择题(每题3分,共30分)1.抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )A .y=x2+2x-2 B. y=x2+2x+1C. y=x2-2x-1 D .y=x2-2x+12.已知二次函数y=ax2+bx+c的图象如右图所示,则一次函数y=ax+bc 的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数在同一直角坐标系内的图象大致是 ( )4、函数y=x2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是( )A. B. C. D.4.有一段导线,在0℃时电阻为2Ω,温度每增加1℃,电阻增加0.008Ω,那么电阻R(Ω)表示为温度t(℃)的函数关系式为( ) A.R=2+0.008t B.R=2-0.008t C.t=2+0.008R D.t=2-0.008R5.某校加工厂现在年产值是15万元,如果每增加100元投资,一年可增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间的函数关系式为( ) A.y=2.5x B.y=1.5x+15 C.y=2.5x+15 D.y=3.5x+156.已知函数y=3x+1,当自变量增加h时,函数值增加( ) A.3h+1 B.3h C.h D.3h-17.图中每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n(n≥2)个棋子,每个图案的棋子总数为S,按下图的排列规律推断S与n之间关系可以用式子_________来表示.A.S=2n B.S=2n+2 C.S=4n-4 D.S=4n-18.汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的距离s(千米)与行驶时间(时)的函数关系式及自变量的取值范围是( ) A.s=120-30t(0≤t≤4) B.s=30t(0≤t≤4) C.s=120-30t(t≥0) D.s=30t(t≥0)9.如图,矩形ABCD中,AB=6cm,BC=12cm,点P从A出发,沿AB向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动(P、Q到达B、C两点后就停止运动).若设运动第ts时五边形APQCD的面积为Scm2,则S与t的函数关系式为( )A.S=t2-6t+72 B.S=t2+6t+72; C.S=t2-6t-72 D.S=t2+6t-7210.在一块长为30m,宽为20m的矩形地面上修建一个正方形花台,设正方形的边长为xm,除去花台后,矩形地面的剩余面积为ym2,则y与x的函数表达式与y的最大值分别为( ) A.y=-x2+600,600m2 B.y=x2+600,600m2 C.y=-x2+600,200m2 D.y=x2-600,600m2二、耐心填一填(每题3分,共15分)11.函数y=(m+3),当m= 时,它的图象是抛物线.12.抛物线y=(x-3)2-1开口向 ,顶点坐标是 ,对称轴是 .13.已知以x为自变量的二次函数y=(m-2)x2+m2-m-2的图象经过原点,则m= ,当x 时y随x增大而减小.14.抛物线的顶点是C(2,),它与x轴交于A、B两点,它们的横坐标是方程x2-4x+3=0的两个根,则AB= ,S△ABC= .15.抛物线y=x2+bx+4与x轴只有一个交点则b= ;当x 时y>0.三、细心解一解(16、17、18、19、20每题9分,21题10分,共55分)16.如图二次函数y=ax2+bx+c的图象经过A 、B、C三点,(1)观察图象,写出A 、B、C三点的坐标,并求出抛物线解析式,(2)求此抛物线的顶点坐标和对称轴(3)观察图象,当x取何值时,y<0?y=0?y>0?17.函数y=ax2+bx+c(其中a、b、c为常数,a≠0),图象如图所示,x=为该函数图象的对称轴,根据这个函数图象,你能得到关于该函数的哪些性质和结论?(写出四个即可)18.某市近年来经济发展速度很快,根据统计:该市国内生产总值1990年为8.6亿元人民币,1995年为10.4亿元人民币,2000年为12.9亿元人民币.经论证:上述数据适合一个二次函数关系,请你根据这个函数关系,预测2005年该市国内生产总值将达到多少?19.已知二次函数y=(m2-2)x2-4mx+n的图象关于直线x=2对称,且它的最高点在直线y=x+1上.(1)求此二次函数的解析式;(2)若此抛物线的开口方向不变,顶点在直线y=x+1上移动到点M时,图象与x轴交于A 、B两点,且S△ABM=8,求此时的二次函数的解析式.20.如图(1)是棱长为a的小正方体,图(2),图(3)由这样的小正方体摆放而成,按照这样的方法继续摆放,自上而下,分别叫做第一层、第二层、第三层、… 、第n层,第n层的小正方体的个数记为s,解答下列问题:(1)按照要求填表:n1234……s136……(2)写出当n=10时,S= ;(3)根据上表中的数据,把S作为纵坐标,n作为横坐标,在平面直角坐标系中,描出相应的各点;(4)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数的图象上,求出该函数的解析式.21.在平面直角坐标系中,给定以下五点A(-2,0),B(1,0),C(4,0),D(-2,),E(0,6),从这五点中选取三点,使经过这三点的抛物线满足以平行于y轴的直线为对称轴.我们约定:把经过三点A、E、B的抛物线表示为抛物线AEB(如图所示)(1)问符合条件的抛物线还有哪几条?不求解析式请用约定的方法表示出来;(2)在(1)中是否存在这样的一条抛物线,它与余下的两点所确定的直线不相交?如果存在,试求抛物线及直线的解析式:如果不存在,请说明理由. 展开更多...... 收起↑ 资源预览