资源简介 高考总复习课程--11(新课标)高考数学(理)第一轮复习第24讲 几何证明选讲(数学选修4-1)(下) 主讲教师:黎宁题四题面:如图,在四边形ABCD中,△ABC≌△BAD.求证:AB∥CD.证明:由△ABC≌△BAD得∠ACB=∠BDA,故A、B、C、D四点共圆,从而∠CBA=∠CDB。再由△ABC≌△BAD得∠CAB=∠DBA。因此∠DBA=∠CDB,所以AB∥CD。题五题面:如图所示,圆的直径,为圆周上一点,.过作圆的切线,过作的垂线,分别与直线、圆交于点,则 ,线段的长为 .答案:;3。题六题面:已知 ABC 中,AB=AC, D是 ABC外接圆劣弧上的点(不与点A,C重合),延长BD至E。(1)求证:AD的延长线平分CDE;(2)若BAC=30,ABC中BC边上的高为2+,求ABC外接圆的面积。 答案:(Ⅰ)如图,设F为AD延长线上一点∵A,B,C,D四点共圆,∴∠CDF=∠ABC又AB=AC ∴∠ABC=∠ACB,且∠ADB=∠ACB, ∴∠ADB=∠CDF,对顶角∠EDF=∠ADB, 故∠EDF=∠CDF,即AD的延长线平分∠CDE.(Ⅱ)外接圆的面积为4。 题七题面:如图,已知是⊙O的切线,为切点,是⊙O的割线,与⊙O交于两点,圆心在的内部,点是的中点.(Ⅰ)证明四点共圆;(Ⅱ)求的大小.答案:(Ⅰ)证明:连结.因为与相切于点,所以.因为是的弦的中点,所以.于是.由圆心在的内部,可知四边形的对角互补,所以四点共圆.(Ⅱ).题八题面: 如图,已知的两条角平分线和相交于H,,F在上,且。(1)证明:B,D,H,E四点共圆:(2)证明:平分。 答案:(Ⅰ)在△ABC中,因为∠B=60°,所以∠BAC+∠BCA=120°.因为AD,CE是角平分线,所以∠HAC+∠HCA=60°,故∠AHC=120°. 于是∠EHD=∠AHC=120°.因为∠EBD+∠EHD=180°,所以B,D,H,E四点共圆.(Ⅱ)连结BH,则BH为∠ABC的平分线,得∠HBD=30°由(Ⅰ)知B,D,H,E四点共圆,所以∠CED=∠HBD=30°.又∠AHE=∠EBD=60°,由已知可得EF⊥AD,可得∠CEF=30°.所以CE平分∠DEF. 第五部分 名师寄语 展开更多...... 收起↑ 资源预览