专题09化学反应速率与化学平衡(学案+练习)-2018年高考化学二轮复习

资源下载
  1. 二一教育资源

专题09化学反应速率与化学平衡(学案+练习)-2018年高考化学二轮复习

资源简介


1.了解化学反应速率的概念、化学反应速率的定量表示方法。
2.了解催化剂在生产、生活和科学研究领域中的重要作用。
3.了解化学反应的可逆性。
4.了解化学平衡建立的过程。理解化学平衡常数的含义,能够利用化学平衡常数进行简单的计算。
5.理解外界条件(浓度、温度、压强、催化剂等)对反应速率和化学平衡的影响,认识其一般规律。
6.了解化学反应速率和化学平衡的调控在生活、生产和科学研究领域中的重要作用。
平衡理论作为一个相对独立的知识体系是高考中的必考考点,而化学平衡又是三大平衡体系(化学平衡、电离平衡、沉淀溶解平衡)之首,在高考中占有相当重要的地位。这类题目难度较大,具有良好的区分度,选拔功能强。
一、物质状态和浓度对反应速率的影响
1.对于有固体参加的化学反应而言,由于在一定条件下,固体的浓度是固定的,所以固体物质在化学反应中浓度不改变,因此在表示化学反应速率时,不能用固体物质。但因为固体物质的反应是在其表面进行的,故与其表面积有关,当固体颗粒变小时,会增大表面积,加快反应速率。
2.对于有气体参加的反应而言,改变压强,对化学反应速率产生影响的根本原因是引起浓度改变所致。所以,在讨论压强对反应速率的影响时,应区分引起压强改变的原因,这种改变对反应体系的浓度产生何种影响,由此判断出对反应速率产生何种影响。
对于气体反应体系,有以下几种情况:
(1)恒温时:
增加压强体积缩小浓度增大反应速率加快。
(2)恒容时:
①充入气体反应物浓度增大总压增大速率加快
②充入“惰气”总压增大,但各分压不变,即各物质的浓度不变,反应速率不变。
(3)恒压时:
充入:“惰气”体积增大各反应物浓度减少反应速率减慢。
二、外界条件对化学反应速率的影响
影响因素
分子总数
活化分子百分数
活化分子总数
活化分子浓度
(单位体积活化分子数)
增大浓度
增加?
?不变
?增加
?增加
增大压强
?不变
?不变
?不变
?增加
升高温度
不变?
?增加
?增加
?增加
正催化剂
不变?
?增加
?增加
?增加
三、化学反应速率的图象
图象也是一种表达事物的语言符号,化学反应速率图象是将化学反应速率变化的状况在直角坐标系中以图的形式表达的结果,是化学反应速率变化规律的反映。认识和应用化学反应速率图象时,要立足于化学方程式,应用化学反应速率变化的规律,分析直角坐标系及其图象的涵义。
1.化学反应CaCO3+2HCl===CaCl2+CO2↑+H2O
(1)其他条件一定,反应速率随着c(HCl)的增大而增大,如图①。
(2)其他条件一定,反应速率随着温度的升高而增大,如图②。
(3)随着反应时间的延长,c(HCl)逐渐减小,化学反应速率逐渐减小,如图③。
2.化学反应2H2S(g)+SO2(g)===3S↓(s)+2H2O(g)
(1)其他条件一定,增大气态反应物的压强(缩小气体容器的容积),反应速率随着压强的增大而增大。如图①。
(2)其他条件一定,减小气态反应物的压强(扩大气体容器的容积),反应速率随着压强的减小而减小,如图②。
(3)温度、气体容器的容积都一定,随着时间的增加,SO2、H2S物质的量逐渐减少,气体的压强逐渐减小,反应速率逐渐减小,如图③。
(4)分别在较低温度T1和较高温度T2下反应,气态反应物的压强都是逐渐增大(缩小容器容积),反应速率随着压强的增大而增大及随着温度的升高而增大,如图④。
四、化学平衡状态的特征和判断方法
1.化学平衡状态的特征
化学平衡状态的特征可以概括为:逆、等、动、定、变。
(1)“逆”——研究对象是可逆反应。
(2)“等”——化学平衡状态建立的条件是正反应速率和逆反应速率相等,即v正=v逆,这是可逆反应达到平衡状态的重要标志。
(3)“动”——指化学反应已达到化学平衡状态时,反应并没有停止,实际上正反应与逆反应始终在进行,只是正反应速率等于逆反应速率,即v正=v逆≠0,所以化学平衡状态是动态平衡状态。
(4)“定”——在一定条件下可逆反应一旦达到平衡(可逆反应进行到最大的程度)状态时,在平衡体系的混合物中,各组成成分的含量(即反应物与生成物的物质的量、物质的量浓度、质量分数、体积分数等)保持一定而不变(即不随时间的改变而改变)。这是判断体系是否处于化学平衡状态的重要依据。
(5)“变”——任何化学平衡状态均是暂时的、相对的、有条件的(与浓度、压强、温度等有关),而与达到平衡的过程无关(化学平衡状态既可从正反应方向开始达到平衡,也可以从逆反应方向开始达到平衡)。当外界条件变化时,原来的化学平衡也会发生相应的变化。
2.化学平衡状态的判断方法
(1)直接判定:v正=v逆(实质)
①同一物质:该物质的生成速率等于它的消耗速率。
②不同的物质:速率之比等于方程式中的系数比,但必须是不同方向的速率。
(2)间接判定:
①各组成成分的质量、物质的量、分子数、体积(气体)、物质的量浓度保持不变。
②各组成成分的质量分数、物质的量分数、气体的体积分数保持不变。
③若反应前后的物质都是气体,且系数不等,总物质的量、总压强(恒温、恒容)、平均摩尔质量、混合气体的密度(恒温、恒压)保持不变。
④反应物的转化率、产物的产率保持不变。
总之,能变的量保持不变说明已达平衡。(如下表所示)
例举反应
mA(g)+nB(g) pC(g)+qD(g)
是否平衡状态
混合物体
系中各成
分的量
①各物质的物质的量或各物质的物质的量分数一定

②各物质的质量或各物质的质量分数一定

③各气体的体积或体积分数一定

④总体积、总压强、总物质的量、总浓度一定
不一定
正反应速
率与逆反
应速率的
关系
①在单位时间内消耗了m mol A,同时生成m mol A,即v正=v逆

②在单位时间内消耗了n mol B,同时消耗了p mol C,则v正=v逆

③vA∶vB∶vC∶vD=m∶n∶p∶q,v正不一定等于v逆
不一定
④在单位时间内生成n mol B,同时消耗q mol D,均指v逆,v正
不一定等于v逆
不一定
压强
①若m+n≠p+q,总压强一定(其他条件不变)

②若m+n=p+q,总压强一定(其他条件不变)
不一定
平均相对
分子质量
①r一定,只有当m+n≠p+q时

②r一定,但m+n=p+q时
不一定
温度
任何化学反应都伴随着能量变化,在其他条件不变的情况下,
体系温度一定时

体系的密度
密度一定
不一定
特别提醒:①化学平衡的实质是v(正)=v(逆)≠0时,表现为平衡体系中各组分的物质的量或物质的量分数不再变化,因此v(正)=v(逆)>0是化学平衡判断的充要条件。
②运用v(正)=v(逆)≠0时,注意方向和数量关系。
③学会“变”与“不变”判断。“变”就是到达平衡过程中量“变”,而到达平衡后“不变”。否则,不一定平衡。
五、等效平衡
1.等效平衡
在一定条件(恒温恒容或恒温恒压)下,同一可逆反应体系,不管是从正反应开始,还是从逆反应开始,在达到化学平衡状态时,任何相同组分的百分含量(体积分数、物质的量分数等)均相同,这样的化学平衡互称等效平衡(。
概念的理解:
(1)外界条件相同:通常可以是①恒温、恒容,②恒温、恒压。
(2)“等效平衡”与“完全相同的平衡状态”不同:“完全相同的平衡状态” 是指在达到平衡状态时,任何组分的物质的量分数(或体积分数)对应相等,并且反应的速率等也相同,但各组分的物质的量、浓度可能不同。而“等效平衡”只要求平衡混合物中各组分的物质的量分数(或体积分数)对应相同,反应的速率、压强等可以不同
(3)平衡状态只与始态有关,而与途径无关,(如:①无论反应从正反应方向开始,还是从逆反应方向开始②投料是一次还是分成几次③反应容器经过扩大—缩小或缩小—扩大的过程,)只要起始浓度相当,就达到相同的平衡状态。
2.等效平衡的分类
在等效平衡中比较常见并且重要的类型主要有以下三种:
第一类:对于恒温、恒容条件下反应前后气体体积改变的可逆反应如果按方程式的化学计量关系转化为方程式同一半边的物质,其物质的量与对应组分的起始加入量相同,则建立的化学平衡状态是等效的。
例如,恒温恒容下的可逆反应:
2SO2 + O2?? 2SO3
①  2 mol  1 mol    0 mol
②  0 mol  0 mol    2 mol
③ 0.5 mol  0.25 mol   1.5 mol
上述三种配比,按方程式的计量关系均转化为反应物,则SO2均为2 mol 、O2均为1 mol,三者建立的平衡状态完全相同。
第二类:对于恒温、恒容条件下为反应前后气体体积不变的可逆反应如果按方程式的化学计量关系转化为方程式同一边的物质,其物质的量比与对应组分的起始加入量比相同,则建立的化学平衡是等效的。
例如,恒温恒容条件下,对于可逆反应:
H2(g) + I2(g)? 2HI(g)
① 1 mol  1 mol   0 mol
② 2 mol  2 mol   1 mol
上述两种配比,按方程式中化学计量关系均转化为反应物,两种情况下H2与I2(g)的物质的量比均为1:1,因此上述两种情况建立的化学平衡状态是等效的。
第三类:对于恒温、恒压条件下的任何气体参加的可逆反应(无论反应前后气体体积可变或不变)。如果按方程式的化学计量关系转化为方程式同一边的物质,其物质的量比与对应组分的起始加入量比相同,则建立的化学平衡是等效的。
例如,恒温、恒压条件下,对于可逆反应:
N2+ 3H2 2NH3
① 1 mol 3 mol  0 mol
② 2 mol 6 mol  1 mol
③ 0 mol 0 mol  0.5mol
上述三种配比,按方程式中化学计量关系均转化为反应物,三种情况下,N2与H2的物质的量比均 1 ∶ 3,因此上述三种情况建立的化学平衡状态是等效的。
3.化学平衡的思维方法:
(1)可逆反应“不为零”原则
可逆性是化学平衡的前提,达到平衡时,反应物和生成物共存,每种物质的物质的量不为零。
一般可用极限分析法推断:假设反应不可逆,则最多生成产物多少,有无反应物剩余,余多少。这样的极值点是不可能达到的,故可用确定某些范围或在范围中选择合适的量。
(2)“一边倒”原则
可逆反应,在条件相同时(如等温等容),若达到等同平衡,其初始状态必须能互变,从极限角度看,就是各物质的物质的量要相当。因此,可以采用“一边倒”的原则来处理以下问题:化学平衡等同条件(等温等容)
可逆反应 aA(g) + bB(g) = cC(g)
①起始量 a b 0 平衡态Ⅰ
②起始量 0 0 c 平衡态Ⅱ
③起始量 x y z 平衡态Ⅲ
为了使平衡Ⅰ=平衡Ⅱ=平衡Ⅲ,根据“一边倒”原则,即可得:x+a/cz=a得x/a+z/c=1; y+b/cz=b得y/b+z/c=1 。
六、化学平衡移动与图像
总结:①只要增大浓度、增大压强、升高温度,新平衡都在原平衡的上方,v′正=v′逆>v正=v逆;只要减小浓度、降低压强、降低温度,新平衡都在原平衡下方,v″正=v″逆②只要是浓度改变,一个速率一定是在原平衡的基础上改变;两个速率同时增大或减小(中间断开)一定是压强或温度改变。
③ 加入催化剂能同等程度地增大正、逆反应速率,平衡不移动。
七 化学平衡常数
1.概念:对于一定条件下的可逆反应(aA+bBcC+dD),达到化学平衡时,生成物浓度的乘幂的乘积与反应物浓度的乘幂的乘积之比为一常数,记作Kc,称为化学平衡常数(浓度平衡常数)。
2.平衡常数的意义
平衡常数的大小反映了化学反应进行的程度(也叫反应的限度)。
(1)K值越大,表示反应进行得越完全,反应物转化率越大;一般认为,K>105时,该反应进行得就基本完全了。
(2)K值越小,表示反应进行得越不完全,反应物转化率越小。
3.注意事项
(1)化学平衡常数只与温度有关,与反应物或生成物的浓度无关。
(2)化学平衡常数是指某一具体反应的平衡常数。若反应方向改变,则平衡常数改变。若方程式中各物质的系数等倍扩大或缩小,尽管是同一反应,平衡常数也会改变。
(3)在平衡常数表达式中:反应物或生成物中固体、纯液体、稀溶液中水的浓度不写。
C(s)+H2O(g) CO(g)+H2(g),K=c(CO)·c(H2)/c(H2O)
FeO(s)+CO(g) Fe(s)+CO2(g),K=c(CO2)/c(CO)
4.化学平衡常数的应用
(1)化学平衡常数值的大小是可逆反应进行程度的标志,它能够表示可逆反应进行的完全程度。一个反应的K值越大,表明平衡时生成物的浓度越大,反应物的浓度越小,反应物的转化率也越大,可以说,化学平衡常数是在一定温度下一个反应本身固有的内在性质的定量体现。
(2)可以利用平衡常数的值,判断正在进行的可逆反应是否平衡以及不平衡时向何方进行建立平衡。如对于可逆反应:mA(g)+nB(g)pC(g)+qD(g)在任意时刻反应物与生成物的浓度有如下关系:
Qc=,Qc叫做该反应的浓度商。
(3)利用K可判断反应的热效应
若升高温度,K值增大,则正反应为吸热反应。
若升高温度,K值减小,则正反应为放热反应。
考点一 化学反应速率及其影响因素
例1.【2017江苏卷】H2O2分解速率受多种因素影响。实验测得70℃时不同条件下H2O2浓度随时间的变化如图所示。下列说法正确的是
A.图甲表明,其他条件相同时,H2O2浓度越小,其分解速率越快
B.图乙表明,其他条件相同时,溶液pH越小,H2O2分解速率越快
C.图丙表明,少量Mn 2+存在时,溶液碱性越强,H2O2分解速率越快
D.图丙和图丁表明,碱性溶液中,Mn2+对H2O2分解速率的影响大
【答案】D
【解析】由甲图可知,双氧水浓度越大,分解越快,A错误;由图乙可知,溶液的碱性越强即pH越大,双氧水分解越快,B错误;根据变量控制法,3个实验必须加入等量的Mn2+才能比较溶液的碱性对双氧水分解的影响。由图丙可知,3个实验中由于仅在其中一个加了Mn2+,C错误;由图丙和图丁可知,溶液的碱性越强、Mn2+浓度越大,双氧水分解越快,D正确。
【变式探究】硝基苯甲酸乙酯在OH-存在下发生水解反应:
O2NC6H4COOC2H5+OH-O2NC6H4COO-+C2H5OH
两种反应物的初始浓度均为0.050 mol·L-1,15 ℃时测得O2NC6H4COOC2H5的转化率α随时间变化的数据如表所示。
t/s
0
120
180
240
330
530
600
700
800
α/%
0
33.0
41.8
48.8
58.0
69.0
70.4
71.0
71.0
回答下列问题:
列式计算该反应在120~180 s与180~240 s区间的平均反应速率____________、____________;比较两者大小可得出的结论是_______________________________________________________。
解析:v1=
≈7.3×10-5mol·L-1·s-1,v2

≈5.8×10-5 mol·L-1·s-1。
通过计算可知,随着反应的进行,反应速率减慢,其原因是浓度的减小造成的。
答案:7.3×10-5mol·L-1·s-1 5.8×10-5mol·L-1·s-1 随着反应的进行,反应物浓度降低,反应速率减慢
【变式探究】(双选)10 mL浓度为1 mol·L-1的盐酸与过量的锌粉反应,若加入适量的下列溶液,能减慢反应速率但又不影响氢气生成量的是(  )
A.K2SO4     B.CH3COONa
C.CuSO4 D.Na2CO3
合题意,正确;B项,CH3COONa与HCl发生反应:CH3COONa+HCl===CH3COOH+NaCl,使溶液中c(H+)减小,反应速率降低,当反应进行到一定程度,会发生反应:2CH3COOH+Zn===(CH3COO)2Zn+H2↑,因此最终不会影响产生H2的物质的量,正确;C项,加入CuSO4溶液会与Zn发生置换反应:CuSO4+Zn===Cu+ZnSO4,产生的Cu与Zn和盐酸构成原电池。会加快反应速率,与题意不符合,错误;D项,若加入Na2CO3溶液,会与盐酸发生反应:Na2CO3+2HCl===2NaCl+H2O+CO2↑,使溶液中的c(H+)减小,但由于逸出了CO2气体,因此使n(H+)也减小,产生H2的物质的量减小,不符合题意,错误。
考点二 化学平衡状态及其影响因素
例2.【2017海南】已知反应CO(g)+H2O(g)CO2(g)+H2(g) ΔH<0。在一定温度和压强下于密闭容器中,反应达到平衡。下列叙述正确的是
A. 升高温度,K减小 B. 减小压强,n(CO2)增加
C. 更换高效催化剂,α(CO)增大 D. 充入一定量的氮气,n(H2)不变
【答案】AD
【变式探究】已知:NO2(g)+SO2(g) SO3(g)+NO(g),现将体积之比为1∶2的NO2和SO2的混合气体置于密闭容器中发生上述反应,下列能说明反应达到平衡状态的是(  )
A.体系压强保持不变
B.混合气体颜色保持不变
C.SO3与NO的体积比保持不变
D.每消耗1 mol SO2,同时生成1 mol NO
解析:选B。体系压强一直不变,故A错误;混合气体颜色保持不变,说明达到平衡状态,故B正确;生成SO3与NO的体积比总保持为1∶1,故C错误;每消耗1 mol SO2,同时生成1 mol NO,未体现v正与v逆的关系,故D错误。
【变式探究】处于平衡状态的反应2H2S(g) 2H2(g)+S2(g) ΔH>0,不改变其他条件的情况下合理的说法是(  )
A.加入催化剂,反应途径将发生改变,ΔH也将随之改变
B.升高温度,正逆反应速率都增大,H2S分解率也增大
C.增大压强,平衡向逆反应方向移动,将引起体系温度降低
D.若体系恒容,注入一些H2后达新平衡,H2浓度将减小
解析:选B。焓变是一个状态函数,与反应发生的途径无关,A项错误;温度升高,正逆反应速率均增大,因该反应是吸热反应,故平衡正向移动,分解率增大,B项正确;该反应是气体体积增大的反应,增大压强平衡逆向移动,逆向反应是放热反应,会使体系温度升高,C项错误;体系中注入H2,体系将向H2浓度降低方向移动,但最终H2的浓度大于原平衡时的浓度,D项错误。
考点三 化学平衡常数及其应用
例3.【2017天津卷】常压下羰基化法精炼镍的原理为:Ni(s)+4CO(g)Ni(CO)4(g)。230℃时,该反应的平衡常数K=2×10?5。已知:Ni(CO)4的沸点为42.2℃,固体杂质不参与反应。
第一阶段:将粗镍与CO反应转化成气态Ni(CO)4;
第二阶段:将第一阶段反应后的气体分离出来,加热至230℃制得高纯镍。
下列判断正确的是
A.增加c(CO),平衡向正向移动,反应的平衡常数增大
B.第一阶段,在30℃和50℃两者之间选择反应温度,选50℃
C.第二阶段,Ni(CO)4分解率较低
D.该反应达到平衡时,v生成[Ni(CO)4]=4v生成(CO)
【答案】B
【变式探究】在一定条件下,已达平衡的可逆反应:2A(g)+B(g) 2C(g),下列说法中正确的是(  )
A.平衡时,此反应的平衡常数K与各物质的浓度有如下关系:K=
B.改变条件后,该反应的平衡常数K一定不变
C.如果改变压强并加入催化剂,平衡常数会随之变化
D.若平衡时增加A和B的浓度,则平衡常数会减小
解析:选A。对某一具体反应来说,K只随温度的改变而改变,除改变温度外,改变其他条件都不会引起平衡常数的改变。
【变式探究】在容积为1.00 L的容器中,通入一定量的N2O4,发生反应N2O4(g) 2NO2(g),随温度升高,混合气体的颜色变深。
回答下列问题:
(1)反应的ΔH________0(填“大于”或“小于”);100 ℃时,体系中各物质浓度随时间变化如上图所示。在0~60 s 时段,反应速率v(N2O4)为________mol·L-1·s-1;反应的平衡常数K1为________。
(2)100 ℃时达平衡后,改变反应温度为T,c(N2O4)以0.002 0 mol·L-1·s-1的平均速率降低,经10 s又达到平衡。
①T________100 ℃(填“大于”或“小于”),判断理由是
______________________________________________。
②列式计算温度T时反应的平衡常数K2_______________________________________________。
(3)温度T时反应达平衡后,将反应容器的容积减少一半。平衡向________(填“正反应”或“逆反应”)方向移动,判断理由是________________________________________________________________________。
          N2O4(g) 2NO2(g)
起始量/(mol·L-1)  0.100     0
转化量/(mol·L-1)  0.060     0.120
平衡量/(mol·L-1)  0.040     0.120
K1===0.36 mol·L-1。
(2)100 ℃时达平衡后,改变反应温度为T,c(N2O4)降低,说明平衡N2O4(g) 2NO2(g)向正反应方向移动,根据勒夏特列原理,温度升高,向吸热反应方向移动,即向正反应方向移动,故T>100 ℃,由c(N2O4)以0.002 0 mol·L-1·s-1的平均速率降低,经10 s又达到平衡,可知此时消耗N2O4 0.002 0 mol·L-1·s-1×10 s=0.020 mol·L-1,由三段式:
        N2O4(g) 2NO2(g)
起始量/(mol·L-1) 0.040   0.120
转化量/(mol·L-1) 0.020   0.040
平衡量/(mol·L-1) 0.020   0.160
K2==≈1.3 mol·L-1。
(3)温度T时反应达到平衡后,将反应容器的容积减少一半,压强增大,平衡会向气体体积减小的方向移动,该反应逆反应为气体体积减小的反应,故平衡向逆反应方向移动。
答案:(1)大于 0.001 0 0.36 mol·L-1
(2)①大于 反应正方向吸热,反应向吸热方向进行,故温度升高
②平衡时,c(NO2)=0.120 mol·L-1+0.002 0 mol·L-1·s-1×10 s×2=0.160 mol·L-1
c(N2O4)=0.040 mol·L-1-0.002 0 mol·L-1·s-1×10 s=0.020 mol·L-1
K2=≈1.3 mol·L-1
(3)逆反应 对气体分子数增大的反应,增大压强平衡向逆反应方向移动
1.【2017天津卷】常压下羰基化法精炼镍的原理为:Ni(s)+4CO(g)Ni(CO)4(g)。230℃时,该反应的平衡常数K=2×10?5。已知:Ni(CO)4的沸点为42.2℃,固体杂质不参与反应。
第一阶段:将粗镍与CO反应转化成气态Ni(CO)4;
第二阶段:将第一阶段反应后的气体分离出来,加热至230℃制得高纯镍。
下列判断正确的是
A.增加c(CO),平衡向正向移动,反应的平衡常数增大
B.第一阶段,在30℃和50℃两者之间选择反应温度,选50℃
C.第二阶段,Ni(CO)4分解率较低
D.该反应达到平衡时,v生成[Ni(CO)4]=4v生成(CO)
【答案】B
2.【2017江苏卷】H2O2分解速率受多种因素影响。实验测得70℃时不同条件下H2O2浓度随时间的变化如图所示。下列说法正确的是
A.图甲表明,其他条件相同时,H2O2浓度越小,其分解速率越快
B.图乙表明,其他条件相同时,溶液pH越小,H2O2分解速率越快
C.图丙表明,少量Mn 2+存在时,溶液碱性越强,H2O2分解速率越快
D.图丙和图丁表明,碱性溶液中,Mn2+对H2O2分解速率的影响大
【答案】D
【解析】由甲图可知,双氧水浓度越大,分解越快,A错误;由图乙可知,溶液的碱性越强即pH越大,双氧水分解越快,B错误;根据变量控制法,3个实验必须加入等量的Mn2+才能比较溶液的碱性对双氧水分解的影响。由图丙可知,3个实验中由于仅在其中一个加了Mn2+,C错误;由图丙和图丁可知,溶液的碱性越强、Mn2+浓度越大,双氧水分解越快,D正确。
3.【2017海南】已知反应CO(g)+H2O(g)CO2(g)+H2(g) ΔH<0。在一定温度和压强下于密闭容器中,反应达到平衡。下列叙述正确的是
A. 升高温度,K减小 B. 减小压强,n(CO2)增加
C. 更换高效催化剂,α(CO)增大 D. 充入一定量的氮气,n(H2)不变
【答案】AD
4.【2017江苏卷】温度为T1时,在三个容积均为1 L的恒容密闭容器中仅发生反应:2NO2(g) 2NO(g)+O2 (g) (正反应吸热)。实验测得:v正= v(NO2)消耗=k正c2(NO2),v逆=v(NO)消耗=2v(O2)消耗=k逆c2(NO)·c(O2),k正、k逆为速率常数,受温度影响。下列说法正确的是
A.达平衡时,容器Ⅰ与容器Ⅱ中的总压强之比为4∶5
B.达平衡时,容器Ⅱ中比容器Ⅰ中的大
C.达平衡时,容器Ⅲ中NO的体积分数小于50%
D.当温度改变为T2时,若k正=k逆,则 T2> T1
【答案】CD
可以求出平衡常数K=,平衡时气体的总物质的量为0.8 mol,其中NO占0.4 mol,所以NO的体积分数为50%,。在平衡状态下,v正=v(NO2)消耗=v逆=v(NO)消耗,所以k正c2(NO2)=k逆c2(NO)?c(O2),进一步求出。A.显然容器II的起始投料与容器I的平衡量相比,增大了反应物浓度,平衡将向逆反应方向移动,所以容器II在平衡时气体的总物质的量一定小于1 mol,故两容器的压强之比一定大于4:5,A错误;B.若容器II在某时刻,,
由反应 2NO2 2NO + O2
起始量(mol/L) 0.3 0.5 0.2
变化量(mol/L) 2x 2x x
平衡量(mol/L) 0.3?2x 0.5+2x 0.2+x
因为,,解之得x=,求出此时浓度商Qc=>K,所以容器II达平衡时,一定小于1,B错误;C.若容器III在某时刻,NO的体积分数为50%,
由反应 2NO2 2NO + O2
起始量(mol/L) 0 0.5 0.35
变化量(mol/L) 2x 2x x
平衡量(mol/L) 2x 0.5?2x 0.35?x
由0.5?2x=2x+0.35?x,解之得,x=0.05,求出此时浓度商Qc=>,说明此时反应未达平衡,反应继续向逆反应方向进行,NO进一步减少,所以C正确;D.温度为T2时,>0.8,因为正反应是吸热反应,升高温度后化学平衡常数变大,所以T2>T1,D正确。
1.【2016年高考北京卷】下列食品添加剂中,其使用目的与反应速率有关的是( )
A.抗氧化剂 B.调味剂 C.着色剂 D.增稠剂
【答案】A
2.【2016年高考四川卷】一定条件下,CH4与H2O(g)发生反应:CH4(g)+H2O(g)CO(g)+3H2(g),设起始=Z,在恒压下,平衡时 (CH4)的体积分数与Z和T(温度)的关系如图所示。下列说法正确的是( )
A.该反应的焓变△H>0
B.图中Z的大小为a>3>b
C.图中X点对应的平衡混合物中=3
D.温度不变时,图中X点对应的平衡在加压后 (CH4)减小
【答案】A
3.【2016年高考江苏卷】一定温度下,在3个体积均为1.0 L的恒容密闭容器中反应2H2(g)+CO(g)CH3OH(g) 达到平衡。下列说法正确的是( )
A.该反应的正反应放热
B.达到平衡时,容器Ⅰ中反应物转化率比容器Ⅱ中的大
C.达到平衡时,容器Ⅱ中c(H2)大于容器Ⅲ中c(H2)的两倍
D.达到平衡时,容器Ⅲ中的正反应速率比容器Ⅰ中的大
【答案】AD
【解析】分析Ⅰ、Ⅲ中数据知反应开始时Ⅰ中加入的H2、CO与Ⅲ中加入甲醇的物质的量相当,平衡时甲醇的浓度:Ⅰ>Ⅲ,温度:Ⅰ<Ⅲ,即升高温度平衡逆向移动,该反应正向为放热反应,A正确;Ⅱ相当于将容器Ⅰ的体积缩小二分之一,该反应正向为气体物质的量减小的反应,增大压强平衡正向移动,达到平衡时,容器Ⅰ中反应物转化率比容器Ⅱ中的小,B错误;Ⅰ和Ⅱ对比,Ⅱ相当于将容器Ⅰ的体积缩小二分之一,该反应正向为气体物质的量减小的反应,增大压强平衡正向移动,则Ⅱ中氢气的浓度小于Ⅰ中氢气浓度的2倍,Ⅲ和Ⅰ对比,平衡逆向移动,氢气浓度增大,故达到平衡时,容器Ⅱ中c(H2)小于容器Ⅲ中c(H2)的两倍,C错误;温度:Ⅲ>Ⅰ,当其他条件不变时,升高温度反应速率加快,故达到平衡时,容器Ⅲ中的正反应速率比容器Ⅰ中的大,D正确。
4.【2016年高考海南卷】(9分) 顺-1,2-二甲基环丙烷和反-1,2-二甲基环丙烷可发生如下转化:
该反应的速率方程可表示为:v(正)=k(正)c(顺)和v(逆)=k(逆)c(反),k(正)和k(逆)在一定温度时为常数,分别称作正,逆反应速率常数。回答下列问题:
(1)已知:t1温度下,k(正)=0.006s-1,k(逆)=0.002s-1,该温度下反应的平衡常数值K1=_____;该反应的活化能Ea(正)小于Ea(逆),则________0(填“小于”“等于”或“大于”)。
(2)t2温度下,图中能表示顺式异构体的质量分数随时间变化的曲线是_______(填曲线编号),平衡常数值K2=_____;温度t2___t1(填“小于”“等于”或“大于”),判断理由是______。
【答案】
(1)3 小于
(2)B 7/3 大于 放热反应升高温度时平衡向逆反应方向移动
【解析】
(2)随着时间的推移,顺式异构体的质量分数不断减小,则符合条件的曲线是B,设顺式异构体的起始浓度为x,该可逆反应左右物质系数相等,均为1,则平衡时,顺式异构体的浓度为0.3x,反式异构体的浓度为0.7x,所以平衡常数值K2=0.7x÷0.3x=7/3,因为K1>K2,放热反应升高温度时平衡向逆反应方向移动, 所以温度t2大于t1。
5.【2016年高考上海卷】(本题共12分)
随着科学技术的发展和环保要求的不断提高,CO2的捕集利用技术成为研究的重点。
完成下列填空:
(1)目前国际空间站处理CO2的一个重要方法是将CO2还原,所涉及的反应方程式为:
CO2(g)+4H2(g)CH4(g)+2H2O(g)
已知H2的体积分数随温度的升高而增加。
若温度从300℃升至400℃,重新达到平衡,判断下列表格中各物理量的变化。(选填“增大”、“减小”或“不变”)
v正
v逆
平衡常数K
转化率α
(2)相同温度时,上述反应在不同起始浓度下分别达到平衡,各物质的平衡浓度如下表:
[CO2]/mol·L-1
[H2]/mol·L-1
[CH4]/mol·L-1
[H2O]/mol·L-1
平衡Ⅰ
a
b
c
d
平衡Ⅱ
m
n
x
y
a、b、c、d与m、n、x、y之间的关系式为_________。
(3)碳酸:H2CO3,Ki1=4.3×10-7,Ki2=5.6×10-11
草酸:H2C2O4,Ki1=5.9×10-2,Ki2=6.4×10-5
0.1 mol/L Na2CO3溶液的pH____________0.1 mol/L Na2C2O4溶液的pH。(选填“大于”“小于”或“等于”)
等浓度广东草酸溶液和碳酸溶液中,氢离子浓度较大的是___________。
若将等浓度的草酸溶液和碳酸溶液等体积混合,溶液中各种离子浓度大小的顺序正确的是_____。(选填编号)
A.[H+]>[HC2O4-]>[HCO3-]>[CO32-] b.[HCO3-]>[HC2O4-]>[C2O42-]>[CO32-]
c.[H+]>[HC2O4-]>[C2O42-]>[CO32-] d.[H2CO3] >[HCO3-]>[HC2O4-]>[CO32-]
(4)人体血液中的碳酸和碳酸氢盐存在平衡:H++ HCO3- H2CO3,当有少量酸性或碱性物质进入血液中时,血液的pH变化不大,用平衡移动原理解释上述现象。
________________________________
【答案】(1)
v正
v逆
平衡常数K
转化率α
增大
增大
减小
减小
(2)
(3)大于;草酸;ac
(4)当少量酸性物质进入血液中,平衡向右移动,使H+浓度变化较小,血液中的pH基本不变;当少量碱性物质进入血液中,平衡向左移动,使H+浓度变化较小,血液的pH基本不变。(合理即给分)
【解析】
(3)根据电离常数可知草酸的酸性强于碳酸,则碳酸钠的水解程度大于草酸钠,所以0.1 mol/L Na2CO3溶液的pH大于0.1 mol/L Na2C2O4溶液的pH。草酸的酸性强于碳酸,则等浓度草酸溶液和碳酸溶液中,氢离子浓度较大的是草酸。a.草酸的两级电离常数均大于碳酸的,所以草酸的两级的电离程度均大于碳酸的,因此溶液中[H+]>[HC2O4-]>[C2O42-]>[HCO3-]>[CO32-],a正确;b.根据a中分析可知b错误;c.根据a中分析可知c正确;d.根据a中分析可知d错误,答案选ac。
(4)根据平衡可知当少量酸性物质进入血液中,平衡向右移动,使H+浓度变化较小,血液中的pH基本不变;当少量碱性物质进入血液中,平衡向左移动,使H+浓度变化较小,血液的pH基本不变。
6.【2016年高考天津卷】(14分)氢能是发展中的新能源,它的利用包括氢的制备、储存和应用三个环节。回答下列问题:
(3)在恒温恒容的密闭容器中,某储氢反应:MHx(s)+yH2(g)MHx+2y(s) ΔH<0达到化学平衡。下列有关叙述正确的是________。
a.容器内气体压强保持不变
b.吸收y mol H2只需1 mol MHx
c.若降温,该反应的平衡常数增大
d.若向容器内通入少量氢气,则v(放氢)>v(吸氢)
(4)利用太阳能直接分解水制氢,是最具吸引力的制氢途径,其能量转化形式为_______。
【答案】
(3)ac
(4)光能转化为化学能
【解析】
(4)利用太阳能直接分解水制氢,是将光能转化为化学能,故答案为:光能转化为化学能;
7.【2016年高考新课标Ⅰ卷】 (15分)
元素铬(Cr)在溶液中主要以Cr3+(蓝紫色)、Cr(OH)4?(绿色)、Cr2O72?(橙红色)、CrO42?(黄色)等形式存在,Cr(OH)3为难溶于水的灰蓝色固体,回答下列问题:
(2)CrO42?和Cr2O72?在溶液中可相互转化。室温下,初始浓度为1.0 mol·L?1的Na2CrO4溶液中c(Cr2O72?)随c(H+)的变化如图所示。
①离子方程式表示Na2CrO4溶液中的转化反应____________。
②由图可知,溶液酸性增大,CrO42?的平衡转化率__________(填“增大“减小”或“不变”)。根据A点数据,计算出该转化反应的平衡常数为__________。
③升高温度,溶液中CrO42?的平衡转化率减小,则该反应的ΔH_________(填“大于”“小于”或“等于”)。
【答案】
(2)①2CrO42-+2H+Cr2O72-+H2O; ② 增大;1.0×1014 ;③小于;
【解析】(2)①随着H+浓度的增大,CrO42-与溶液中的H+发生反应,反应转化为Cr2O72-的离子反应式为:2CrO42-+2H+Cr2O72-+H2O。②根据化学平衡移动原理,溶液酸性增大,c(H+)增大,化学平衡2CrO42-+2H+Cr2O72-+H2O向正反应方向进行,导致CrO42?的平衡转化率增大;根据图像可知,在A点时,c(Cr2O72-)=0.25 mol/L,由于开始时c(CrO42?)=1.0 mol/L,根据Cr元素守恒可知A点的溶液中CrO42-的浓度c(CrO42?)=0.5 mol/L;H+浓度为1.0×10-7 mol/L;此时该转化反应的平衡常数为;③由于升高温度,溶液中CrO42?的平衡转化率减小,说明升高温度,化学平衡逆向移动,导致溶液中CrO42?的平衡转化率减小,根据平衡移动原理,升高温度,化学平衡向吸热反应方向移动,逆反应方向是吸热反应,所以该反应的正反应是放热反应,故该反应的ΔH<0;
8.【2016年高考新课标Ⅱ卷】丙烯腈(CH2=CHCN)是一种重要的化工原料,工业上可用“丙烯氨氧化法”生产,主要副产物有丙烯醛(CH2=CHCHO)和乙腈CH3CN等,回答下列问题:
(1)以丙烯、氨、氧气为原料,在催化剂存在下生成丙烯腈(C3H3N)和副产物丙烯醛(C3H4O)的热化学方程式如下:
① C3H6(g)+NH3(g)+ 3/2O2(g)=C3H3N(g)+3H2O(g) △H=-515kJ/mol
② C3H6(g)+ O2(g)=C3H4O(g)+H2O(g) △H=-353kJ/mol
两个反应在热力学上趋势均很大,其原因是 ;有利于提高丙烯腈平衡产率的反应条件是 ;提高丙烯腈反应选择性的关键因素是 。
(2)图(a)为丙烯腈产率与反应温度的关系曲线,最高产率对应温度为460OC.低于460OC时,丙烯腈的产率 (填“是”或者“不是”)对应温度下的平衡产率,判断理由是 ;高于460OC时,丙烯腈产率降低的可能原因是 (双选,填标号)
A.催化剂活性降低 B.平衡常数变大 C.副反应增多 D.反应活化能增大
(3)丙烯腈和丙烯醛的产率与n(氨)/n(丙烯)的关系如图(b)所示。由图可知,最佳n(氨)/n(丙烯)约为 ,理由是。进料氨、空气、丙烯的理论体积约为
【答案】(1)两个反应均为放热量大的反应;降低温度、降低压强;催化剂;
(2)不是;该反应为放热反应,平衡产率应随温度升高而降低 ;AC
(3)1 ; 该比例下丙烯腈产率最高,而副产物丙烯醛产率最低; 1:7.5:1
【解析】(1)因为两个反应均为放热量大的反应,所以热力学趋势大;该反应为气体分子数增大的放热反应,所以降低温度、降低压强有利于提高丙烯腈的平衡产率;提高丙烯腈反应选择性的关键因素是催化剂。(2)因为该反应为放热反应,平衡产率应随温度升高而降低,反应刚开始进行,尚未达到平衡状态,460℃D.反应活化能的大小不影响平衡,错误;答案选AC。(3)根据图像可知,当n(氨)/n(丙烯)约为1时,该比例下丙烯腈产率最高,而副产物丙烯醛产率最低;根据化学反应C3H6(g)+NH3(g)+ 3/2O2(g)=C3H3N(g)+3H2O(g),氨气、氧气、丙烯按1:1.5:1的体积比加入反应达到最佳状态,而空气中氧气约占20%,所以进料氨、空气、丙烯的理论体积约为1:7.5:1。
9. 【2016年高考新课标Ⅲ卷】(15分)
煤燃烧排放的烟气含有SO2和NOx,形成酸雨、污染大气,采用NaClO2溶液作为吸收剂可同时对烟气进行脱硫、脱硝,回答下列问题:
(1) NaClO2的化学名称为_______。
(2)在鼓泡反应器中通入含有含有SO2和NOx的烟气,反应温度为323 K,NaClO2溶液浓度为5×10?3mol·L?1 。反应一段时间后溶液中离子浓度的分析结果如下表》
离子
SO42?
SO32?
NO3?
NO2?
Cl?
c/(mol·L?1)
8.35×10?4
6.87×10?6
1.5×10?4
1.2×10?5
3.4×10?3
①写出NaClO2溶液脱硝过程中主要反应的离子方程式__________。增加压强,NO的转化率______(填“提高”“不变”或“降低”)。
②随着吸收反应的进行,吸收剂溶液的pH逐渐______ (填“提高”“不变”或“降低”)。
③由实验结果可知,脱硫反应速率______脱硝反应速率(填“大于”或“小于”)。原因是除了SO2和NO在烟气中的初始浓度不同,还可能是___________。
(3)在不同温度下,NaClO2溶液脱硫、脱硝的反应中,SO2和NO的平衡分压px如图所示。
①由图分析可知,反应温度升高,脱硫、脱硝反应的平衡常数均______________(填“增大”“不变”或“减小”)。
②反应ClO2?+2SO32?===2SO42?+Cl?的平衡常数K表达式为___________。
【答案】(1)亚氯酸钠;(2)①2OH-+3ClO2-+4NO=4NO3-+3Cl-+2H2O;提高 ②减小;
③大于;NO溶解度较低或脱硝反应活化能较高 (3)①减小;②

②根据反应的方程式ClO2?+2SO32?===2SO42?+Cl?可知平衡常数K表达式为。
③由实验结果可知,在相同时间内硫酸根离子的浓度增加的多,因此脱硫反应速率大于脱硝反应速率。原因是除了SO2和NO在烟气中的初始浓度不同,还可能是二氧化硫的还原性强,易被氧化。
(3)在不同温度下,NaClO2溶液脱硫、脱硝的反应中,SO2和NO的平衡分压pe如图所示。
①由图分析可知,反应温度升高,SO2和NO的平衡分压负对数减小,这说明反应向逆反应方向进行,因此脱硫、脱硝反应的平衡常数均减小。
②根据反应的方程式ClO2?+2SO32?===2SO42?+Cl?可知平衡常数K表达式为。

10.【2016年高考浙江卷】(15分)催化还原CO2是解决温室效应及能源问题的重要手段之一。研究表明,在Cu/ZnO催化剂存在下,CO2和H2可发生两个平衡反应,分别生成CH3OH和CO。反应的热化学方程式如下:
CO2(g)+3 H2(g) CH3OH(g)+H2O(g)ΔH1=-53.7kJ·mol-1 I
CO2(g)+ H2(g) CO(g)+H2O(g)ΔH2 II
某实验室控制CO2和H2初始投料比为1:2.2,经过相同反应时间测得如下实验数据:
【备注】Cat.1:Cu/ZnO纳米棒;Cat.2:Cu/ZnO纳米片;甲醇选择性:转化的CO2中生成甲醛的百分比
已知:①CO和H2的标准燃烧热分别为-283.0kJ·mol-1和-285.8kJ·mol-1
②H2O(l) H2O(g) ΔH3=44.0kJ·mol-1
请回答(不考虑温度对ΔH的影响):
(1)反应I的平衡常数表达式K= ;反应II的ΔH2= kJ·mol-1。
(2)有利于提高CO2转化为CH3OH平衡转化率的措施有 。
A.使用催化剂Cat.1 B.使用催化剂Cat.2 C.降低反应温度
D.投料比不变,增加反应物的浓度 E.增大CO2和H2的初始投料比
(3)表中实验数据表明,在相同温度下不同的催化剂对CO2转化成CH3OH的选择性有显著的影响,其原因是 。
【答案】(1) +41.2
(2)CD
(3)表中数据表明此时反应未达到平衡,不同的催化剂对反应Ⅰ的催化能力不同,因而在该时刻下对甲醇选择性有影响。
ΔH2=-285.8+283.0+44=+41.2 kJ·mol-1。(2)反应Ⅰ中A、使用催化剂,平衡不移动,不能提高转化率,错误;B、使用催化剂,平衡不移动,不能提高转化率,错误;C、降低反应温度,平衡正向移动,提高二氧化碳的转化率,正确;D、投料比不变,增加反应的浓度,平衡正向移动,提高二氧化碳的转化率,正确;E、增大二氧化碳和氢气的初始投料比,能提高氢气的转化率,二氧化碳的会降低,故错误。故选CD。(3)从表格数据分析,在相同的温度下,不同的催化剂,相同的反应时间内,其二氧化碳的转化率也不同,说明不同的催化剂的催化能力不同;相同催化剂不同的温度,二氧化碳的转化率不同,且温度高的转化率大,因为正反应为放热反应,说明表中数据是未到平衡数据。所以答案为:表中数据表明此时反应未达到平衡,不同的催化剂对反应Ⅰ的催化能力不同,因而在该时刻下对甲醇选择性有影响。
1.(2015·安徽理综,11,6分)汽车尾气中NO产生的反应为:N2(g)+O2(g)2NO(g),一定条件下,等物质的量的N2(g)和O2(g)在恒容密闭容器中反应,下图曲线a表示该反应在温度T下N2的浓度随时间的变化,曲线b表示该反应在某一起始反应条件改变时N2的浓度随时间的变化。下列叙述正确的是(  )
A.温度T下,该反应的平衡常数K=
B.温度T下,随着反应的进行,混合气体的密度减小
C.曲线b对应的条件改变可能是加入了催化剂
D.若曲线b对应的条件改变是温度,可判断该反应的ΔH<0
答案 A
2.(2015·四川理综,7,6分)一定量的CO2与足量的碳在体积可变的恒压密闭容器中反应:C(s)+CO2(g) 2CO(g),平衡时,体系中气体体积分数与温度的关系如下图所示:
已知:气体分压(p分)=气体总压(p总)×体积分数。下列说法正确的是(  )
A.550 ℃时,若充入惰性气体,v正、v逆均减小,平衡不移动
B.650 ℃时,反应达平衡后CO2的转化率为25.0 %
C.T ℃时,若充入等体积的CO2和CO,平衡向逆反应方向移动
D.925 ℃时,用平衡分压代替平衡浓度表示的化学平衡常数Kp=24.0p总
×100%=40.0%,x=0.25 L,CO2的转化率为25%,正确;C项,由图可知,T ℃时平衡体系中CO和CO2的体积分数均为50%,故若恒压时充入等体积的CO2和CO两种气体平衡不发生移动,错误;D项,925 ℃时,CO的平衡分压p(CO)=p总×96.0%,CO2的平衡分压p(CO2)=p总×4%,根据化学平衡常数的定义可知
Kp===23.04 p总,错误。
答案 B
3.(2015·江苏化学,15,4分)在体积均为1.0 L的两恒容密闭容器中加入足量的相同的碳粉,再分别加入0.1 mol CO2和0.2 mol CO2,在不同温度下反应CO2(g)+C(s)2CO(g)达到平衡,平衡时CO2的物质的量浓度c(CO2)随温度的变化如图所示(图中Ⅰ、Ⅱ、Ⅲ点均处于曲线上)。下列说法正确的是(双选)(  )
A.反应CO2(g)+C(s)===2CO(g)的ΔS>0、ΔH<0
B.体系的总压强p总:p总(状态Ⅱ)>2p总(状态Ⅰ)
C.体系中c(CO):c(CO,状态Ⅱ)<2c(CO,状态Ⅲ)
D.逆反应速率:v逆(状态Ⅰ)>v逆(状态Ⅲ)
解析 A项,CO2(g)+C(s)===2CO(g)气体的物质的量增加的反应,故ΔS>0,观察图像知,随着温度的升高,c(CO2)减小,平衡为正移,则ΔH>0,错误;B项,Ⅰ所在d曲线表示的是通入0.1 mol CO2的变化过程,此时
此时气体总的物质的量为0.12 mol,
Ⅱ所在曲线表示的是通入0.2 mol CO2的变化过程,此时
此时气体总的物质的量为0.32 mol,此时Ⅱ中气体总物质的量大于Ⅰ中气体总物质的量的2倍,且Ⅱ的温度高,气体体积膨胀,压强又要增大,则p总(状态Ⅱ)>2p总(状态Ⅰ),正确;C项,状态Ⅱ和Ⅲ,温度相同,Ⅱ中CO2的投料量是Ⅲ中CO2投料量的2倍,若恒容时两平衡等效,则有c(CO,状态Ⅱ)=2c(CO,状态Ⅲ),但成比例增加投料量,相当于加压,平衡向逆反应方向移动,所以c(CO,状态Ⅱ)<2c(CO,状态Ⅲ),正确;D项,状态Ⅰ和Ⅲ相比,Ⅲ的温度高,反应速率快,所以v逆(状态Ⅲ)>v逆(状态Ⅰ),错误。
答案 BC
4.(2015·山东理综,30,19分)合金贮氢材料具有优异的吸收氢性能,在配合氢能的开发中起到重要作用。
(1)一定温度下,某贮氢合金(M)的贮氢过程如图所示,纵轴为平衡时氢气的压强(p),横轴表示固相中氢原子与金属原子的个数比(H/M)。
在OA段,氢溶解于M中形成固溶体MHx,随着氢气压强的增大,H/M逐渐增大;在AB段,MHx与氢气发生氢化反应生成氢化物MHy,氢化反应方程式为:zMHx(s)+H2(g)??zMHy(s) ΔHⅠ(Ⅰ);在B点,氢化反应结束,进一步增大氢气压强,H/M几乎不变。反应(Ⅰ)中z=________(用含x和y的代数式表示)。温度为T1时,2 g某合金4 min内吸收氢气240 mL,吸氢速率v=________ mL·g-1·min-1。反应的焓变ΔHⅠ________0(填“>”“<”或“=”)。
(2)η表示单位质量贮氢合金在氢化反应阶段的最大吸氢量占其总吸氢量的比例,则温度为T1、T2时,η(T1)________η(T2)(填“>”“<”或“=”)。当反应(Ⅰ)处于图中a点时,保持温度不变,向恒容体系中通入少量氢气,达到平衡后反应(Ⅰ)可能处于图中的________点(填“b”“c”或“d”),该贮氢合金可通过________或________的方式释放氢气。
(3)贮氢合金ThNi5可催化由CO、H2合成CH4的反应,温度为T时,该反应的热化学方程式为________________。已知温度为T时:CH4(g)+2H2O(g)===CO2(g)+4H2(g) ΔH=+165 kJ·mol-1
CO(g)+H2O(g)===CO2(g)+H2(g) ΔH=-41 kJ·mol-1
不变,向恒容体系中通入少量氢气,H2 浓度增大,平衡正向移动,一段时间后再次达到平衡,此时H/M增大,故可能处于图中的c点。由氢化反应方程式及图像可知,这是一个放热的气体体积减小的反应,根据平衡移动原理,要使平衡向左移动释放H2,可改变的条件是:升温或减压。(3)CO、H2合成CH4的反应为CO(g)+3H2(g)===CH4(g)+H2O(g) ΔH,将已知的两个热化学方程式依次编号为①、②,②-①即得所求的反应,根据盖斯定律有:ΔH=-41 kJ·mol-1-(+165 kJ·mol-1)=-206 kJ·mol-1。
答案 (1) 30 <
(2)> c 加热 减压
(3)CO(g)+3H2(g)===CH4(g)+H2O(g) ΔH=-206 kJ·mol-1
5.(2015·浙江理综,28,15分)乙苯催化脱氢制苯乙烯反应:
+H2(g)
(1)已知:
化学键
C—H
C—C
C===C
H—H
键能/kJ·mol-1
412
348
612
436
计算上述反应的ΔH=________ kJ·mol-1。
(2)维持体系总压p恒定,在温度T时,物质的量为n、体积为V的乙苯蒸气发生催化脱氢反应。已知乙苯的平衡转化率为α,则在该温度下反应的平衡常数K=________(用α等符号表示)。
(3)工业上,通常在乙苯蒸气中掺混水蒸气(原料气中乙苯和水蒸气的物质的量之比为1∶9),控制反应温度600 ℃,并保持体系总压为常压的条件下进行反应。在不同反应温度下,乙苯的平衡转化率和某催化剂作用下苯乙烯的选择性(指除了H2以外的产物中苯乙烯的物质的量分数)示意图如下:
①掺入水蒸气能提高乙苯的平衡转化率,解释说明该事实________。
②控制反应温度为600 ℃的理由是________。
(4)某研究机构用CO2代替水蒸气开发了绿色化学合成工艺——乙苯-二氧化碳耦合催化脱氢制苯乙烯。保持常压和原料气比例不变,与掺水蒸气工艺相比,在相同的生产效率下,可降低操作温度;该工艺中还能够发生反应:CO2+H2===CO+H2O,CO2+C===2CO。新工艺的特点有________(填编号)。
①CO2与H2反应,使乙苯脱氢反应的化学平衡右移
②不用高温水蒸气,可降低能量消耗
③有利于减少积炭
④有利于CO2资源利用
解析 (1)设“”部分的化学键键能为a kJ·mol-1,则ΔH=(a+348+412×5) kJ·mol-1-(a+612+412×3+436) kJ·mol-1=124 kJ·mol-1。
(2)根据反应:
起始物质的量 n        0       0
改变物质的量 nα nα nα
平衡物质的量 (1-α)n nα nα
平衡时体积为(1+α)V
平衡常数K==
另外利用分压也可以计算出:Kp=p
(4)①CO2与H2反应,H2浓度减小,使乙苯脱氢反应的化学平衡右移,正确;②不用高温水蒸气,可降低能量消耗,正确;③CO2能与碳反应,生成CO,减少积炭,正确;④充分利用CO2资源,正确。故选①②③④。
答案 (1)124 (2)p或
(3)①正反应方向气体分子数增加,加入水蒸气稀释,相当于起减压的效果
②600 ℃,乙苯的转化率和苯乙烯的选择性均较高。温度过低,反应速率慢,转化率低;温度过高,选择性下降。高温还可能使催化剂失活,且能耗大
(4)①②③④
6.(2015·海南化学,8,4分)10 mL浓度为1 mol·L-1的盐酸与过量的锌粉反应,若加入适量的下列溶液,能减慢反应速率但又不影响氢气生成量的是(双选)(  )
A.K2SO4 B.CH3COONa
C.CuSO4 D.Na2CO3
解析 锌与稀盐酸反应过程中,若加入物质使反应速率降低,则溶液中的氢离子浓度减小,但由于不影响氢气的生成量,故氢离子的总物质的量不变。A项,硫酸钾为强酸强碱盐,不发生水解,若加入其溶液,则对盐酸产生稀释作用,氢离子浓度减小,但H+物质的量不变,正确;B项,加入醋酸钠,则与盐酸反应生成醋酸,使溶液中氢离子浓度减小,随着反应的进行,CH3COOH最终又完全电离,故H+物质的量不变,正确;C项,加入硫酸铜溶液,Cu2+会与锌反应生成铜,构成原电池,会加快反应速率,错误;D项,加入碳酸钠溶液,会与盐酸反应,使溶液中的氢离子的物质的量减少,导致反应速率减小,生成氢气的量减少,错误。
答案 AB
7、(2015·福建理综,12,6分)在不同浓度(c)、温度(T)条件下,蔗糖水解的瞬时速率(v)如下表。下列判断不正确的是(  )
0.600
0.500
0.400
0.300
318.2
3.60
3.00
2.40
1.80
328.2
9.00
7.50
a
4.50
b
2.16
1.80
1.44
1.08
A.a=6.00
B.同时改变反应温度和蔗糖的浓度,v可能不变
C.b<318.2
D.不同温度时,蔗糖浓度减少一半所需的时间相同
响趋势相反,并能相互抵消,反应速率也可能不变,正确;C项,在物质的浓度不变时,温度升高,水解速率加快,温度降低,水解速率减慢。由于在物质的浓度为0.600 mol·L-1时,当318.2 K时水解速率是3.60 mmol·L-1·min-1,现在该反应的速率为2.16 mmol·L-1·min-1小于3.60 mmol·L-1·min-1,所以反应温度低于318.2 K,即b<318.2,正确;D项,由于温度不同时,在相同的浓度时的反应速率不同,所以不同温度下,蔗糖浓度减小一半所需的时间不同,错误。
答案 D
8.(2015·天津理综,6,6分)某温度下,在2 L的密闭容器中,加入1 mol X(g)和2 mol Y(g)发生反应:X(g)+m Y(g) 3 Z(g)平衡时,X、Y、Z的体积分数分别为30%、60%、10%。在此平衡体系中加入1 mol Z(g),再次达到平衡后,X、Y、Z的体积分数不变。下列叙述不正确的是(  )
A.m=2
B.两次平衡的平衡常数相同
C.X与Y的平衡转化率之比为1∶1
D.第二次平衡时,Z的浓度为0.4 mol·L-1
解析 A项,由题意可知两种条件下X、Y、Z的初始物质的量不同,而最终平衡状态相同,则两种条件下建立的平衡为温度、容积不变时的等效平衡,故满足反应前后气态物质计量数之和相等,则1+m=3,m=2,正确;B项,温度不变,平衡常数不变,正确;C项,X、Y 的初始物质的量之比为1∶2,根据方程式可知参加反应的X、Y的物质的量之比也为1∶2,故X与Y的平衡转化率之比为1∶1,正确;D项,由方程式可知该反应反应前后气体的物质的量不变,所以第二次平衡时气体的总物质的量为4 mol,则Z的物质的量为4 mol×10%=0.4 mol,Z的浓度为0.4 mol÷2 L=0.2 mol·L-1,错误。
答案 D
9.(2015·重庆理综,7,6分)羰基硫(COS)可作为一种粮食熏蒸剂,能防止某些昆虫、线虫和真菌的危害。在恒容密闭容器中,将CO和H2S混合加热并达到下列平衡:
CO(g)+H2S(g)COS(g)+H2(g) K=0.1
反应前CO物质的量为10 mol,平衡后CO物质的量为8 mol。下列说法正确的是(  )
A.升高温度,H2S浓度增加,表明该反应是吸热反应
B.通入CO后,正反应速率逐渐增大
C.反应前H2S物质的量为7 mol
D.CO的平衡转化率为80%
因为该反应是反应前后气体体积不变的反应,所以有K==0.1,解得n=7,正确;D项,根据上述计算可知CO的转化率为20%,错误。
答案 C
10.(2015·课标全国卷Ⅰ,28,15分)碘及其化合物在合成杀菌剂、药物等方面具有广泛用途。回答下列问题:
(1)大量的碘富集在海藻中,用水浸取后浓缩,再向浓缩液中加MnO2和H2SO4,即可得到I2,该反应的还原产物为________。
(2)上述浓缩液中主要含有I-、Cl-等离子,取一定量的浓缩液,向其中滴加AgNO3溶液,当AgCl开始沉淀时,溶液中为________________,已知Ksp(AgCl)=1.8×10-10,Ksp(AgI)=8.5×10-17。
(3)已知反应2HI(g)===H2(g)+I2(g)的ΔH=+11 kJ·mol-1,1 mol H2(g)、1 mol I2(g)分子中化学键断裂时分别需要吸收436 kJ、151 kJ的能量,则1 mol HI(g)分子中化学键断裂时需吸收的能量为________________kJ。
(4)Bodensteins研究了下列反应:2HI(g)??H2(g)+I2(g)在716 K时,气体混合物中碘化氢的物质的量分数x(HI)与反应时间t的关系如下表:
t/min
0
20
40
60
80
120
x(HI)
1
0.91
0.85
0.815
0.795
0.784
x(HI)
0
0.60
0.73
0.773
0.780
0.784
①根据上述实验结果,该反应的平衡常数K的计算式为
__________________________________________________________________。
②上述反应中,正反应速率为v正=k正x2(HI),逆反应速率为v逆=k逆x(H2)x(I2),其中k正、k逆为速率常数,则k逆为________(以K和k正表示)。若k正=0.002 7 min-1,在t=40 min时,v正=________min-1。
③由上述实验数据计算得到v正~x(HI)和v逆~x(H2)的关系可用下图表示。当升高到某一温度时,反应重新达到平衡,相应的点分别为________________(填字母)。
=2E(H—I)-E(H—H)-E(I—I),2E(H—I)=ΔH+E(H—H)+E(I—I)=11 kJ·mol-1+436 kJ·mol-1+151 kJ·mol-1=598 kJ·mol-1,则E(H—I)=299 kJ·mol-1]。(4)①2HI(g)??H2 (g)+I2 (g)是反应前后气体物质的量不变的反应。反应后x(HI)=0.784,则x(H2)=x(I2)=0.108,K===。②到达平衡时,v正=v逆,即k正x2(HI)=k逆x(H2)x(I2),k逆=k正·=k正/K,在t=40 min时,x(HI)=0.85,v正=k正x2(HI)=0.002 7 min-1×(0.85)2=1.95×10-3 min-1。③原平衡时,x(HI)为0.784,x(H2)为0.108,二者图中纵坐标均约为1.6(因为平衡时v正=v逆),升高温度,正、逆反应速率均加快,对应两点在1.6上面, 升高温度,平衡向正反应方向移动,x(HI)减小(A点符合),x(H2)增大(E点符合)。
答案 (1)MnSO4(或Mn2+) (2)4.7×10-7 (3)299
(4)① ②k正/K 1.95×10-3 ③A点、E点
11、(2015·课标全国卷Ⅱ,27,14分)甲醇既是重要的化工原料,又可作为燃料,利用合成气(主要成分为CO、CO2和H2)在催化剂作用下合成甲醇,发生的主要反应如下:
①CO(g)+2H2(g)CH3OH(g)ΔH1
②CO2(g)+3H2(g)CH3OH(g)+H2O(g)ΔH2
③CO2(g)+H2(g)CO(g)+H2O(g)ΔH3
回答下列问题:
(1)已知反应①中相关的化学键键能数据如下:
化学键
H—H
C—O
H—O
C—H
E/(kJ·mol-1)
436
343
1 076
465
413
由此计算ΔH1=________kJ·mol-1;已知ΔH2=-58 kJ·mol-1,则ΔH3=________kJ·mol-1。
(2)反应①的化学平衡常数K表达式为________;图1中能正确反映平衡常数K随温度变化关系的曲线为________(填曲线标记字母),其判断理由是________。
图1
图2
(3)合成气组成n(H2)/n(CO+CO2)=2.60时,体系中的CO平衡转化率(α)与温度和压强的关系如图2所示。α(CO)值随温度升高而________(填“增大”或“减小”),其原因是________________________________;图2中的压强由大到小为________,其判断理由是____________。
不变的反应,加压对其平衡无影响;反应①为气体分子数减小的反应,加压使α(CO)增大;由图2可知,固定温度(如530 K)时,p1→p2→p3,α(CO)增大,因此综合分析可知p3>p2>p1。
答案 (1)-99 +41
(2)K= a 反应①为放热反应,升高温度使其平衡向逆反应方向移动,平衡常数K应减小
(3)减小 由图2可知,压强恒定时,随着温度的升高,α(CO)减小 p3>p2>p1 温度恒定时,反应①为气体分子数减小的反应,加压使平衡向正反应方向移动,α(CO)增大,而反应③为气体分子数不变的反应,加压对其平衡无影响,故增大压强时,有利于α(CO)增大
1.【2014年高考安徽卷第10题】臭氧是理想的烟气脱硝剂,其脱硝反应为:
2NO2(g)+O3(g)N2O5(g)+O2(g),反应在恒容密闭容器中进行,下列由该反应相关图像作出的判断正确的是
【答案】A
【解析】A、该反应为放热反应,升高问题平衡朝逆向移动,故平衡常数减小,正确;B、速率单位错误,该为mol?L-1?s-1,错误;C、催化剂不影响平衡移动,错误;D、通入氧气,平衡逆向移动,转化率减小,错误。
【考点定位】化学反应速率、化学平衡移动
2.【2014年高考新课标Ⅰ卷第9题】已知分解1 mol H2O2 放出热量98KJ,在含少量I-的溶液中,H2O2的分解机理为:
H2O2+ I- →H2O +IO- 慢 H2O2+ IO-→H2O +O2+ I- 快
下列有关反应的说法正确的是( )
A.反应的速率与I-的浓度有关 B. IO-也是该反应的催化剂
C.反应活化能等于98KJ·mol-1 D.v(H2O2)=v(H2O)=v(O2)
【答案】A
【解析】
【考点定位】考查H2O2分解的原理、影响化学反应速率的因素及相应的关系的知识。
3.【2014年高考福建卷第12题】在一定条件下,N2O分解的部分实验数据如下:
反应时间/min
0
10
20
30
40
50
60
70
80
90
100
c(N2O)/mol/L
0.100
0.090
0.080
0.070
0.060
0.050
0.040
0.030
0.020
0.010
0.000
下图能正确表示该反应有关物理量变化规律的是
(注:图中半衰期指任一浓度N2O消耗一半时所需的相应时间,c1、c2均表示N2O初始浓度且c1<c2)
【答案】A
【解析】
从表中的数据说明每个时间段内v (N2O)相等,故A项图像正确;B项图像错误;C项从表中数据分析可知半衰期与浓度的关系图为,错误;D项从表中数据分析可知不同浓度下的转化率不同(浓度大转化率小),在相同浓度条件下的转化率相同,故D项图像错误。
【考点定位】考查化学反应速率、转化率、半衰期与浓度的关系等。
5.【2014年高考天津卷第3题】运用相关化学知识进行判断,下列结论错误的是
A.某吸热反应能自发进行,因此该反应是熵增反应
B.NH4F水溶液中含有HF,因此NH4F溶液不能存放于玻璃试剂瓶中
C.可燃冰主要甲烷与水在低温高压下形成的水合物晶体,因此可存在于海底
D.增大反应物浓度可加快反应速率,因此用浓硫酸与铁反应能增大生成H2的速率
【答案】D
【考点定位】本题考查物质的性质与应用、自发反应。
6.【2014年高考江苏卷第15题】一定温度下,在三个体积约为1.0L的恒容密闭容器中发生反应:2CH3OH(g)CH3OCH3(g)+H2O(g)
容器
编号
温度(℃)
起始物质的量(mol)
平衡物质的量(mol)
CH3OH(g)
CH3OCH3(g)
H2O(g)
I
387
0.20
0.080
0.080

387
0.40

207
0.20
0.090
0.090
下列说法正确的是
A.该反应的正方应为放热反应
B.达到平衡时,容器I中的CH3OH体积分数比容器Ⅱ中的小
C.容器I中反应达到平衡所需时间比容器Ⅲ中的长
D.若起始时向容器I中充入CH3OH 0.1mol、CH3OCH3 0.15mol和H2O 0.10mol,则反应将向正反应方向进行
【答案】AD
C、容器I中温度高,反应速率快,因此容器I中反应达到平衡所需时间比容器Ⅲ中的少,C不正确;D、根据容器I表中数据可知,平衡时生成物的浓度均是0.080mol/L,则根据反应的化学方程式可知消耗甲醇的浓度是0.16mol/L,所以平衡时甲醇的浓度是0.04mol/L,所以该温度下的平衡常数K= =4。若起始时向容器I中充入CH3OH 0.1mol、CH3OCH3 0.15mol和H2O 0.10mol,则此时=1.5<4,所以反应将向正反应方向进行,D正确,答案选AD。
【考点定位】考查化学反应速率和化学平衡常数的有关判断与计算
7.【2014年高考重庆卷第7题】在恒容密闭容器中通入X并发生反应:2X(g)Y(g),温度T1、T2下X的物质的量浓度c(x)随时间t变化的曲线如图所示,下列叙述正确的是
A.该反应进行到M点放出的热量大于进行到W点放出的热量
B.T2下,在0~t1时间内,υ(Y)=mol/(L·min)
C.M点的正反应速率υ正大于N点的逆反应速率υ逆
D.M点时再加入一定量的X,平衡后X的转化率减小
【答案】C
度高反应速率快,到达平衡的时间少,则温度是T1>T2。M点温度高于N点温度,且N点反应没有达到平衡状态,此时反应向正反应方向进行,即N点的逆反应速率小于N点的正反应速率,因此M点的正反应速率大于N点的逆反应速率,C正确;D、由于反应前后均是一种物质,因此M点时再加入一定量的X,则相当于是增大压强,正方应是体积减小的可逆反应,因此平衡向正反应方向移动,所以X的转化率升高,D不正确,答案选C。
【考点定位】考查化学反应速率和平衡平衡状态的有关判断与计算
8.【2014年高考北京卷第12题】一定温度下,10mL0.40mol/L H2O2溶液发生催化分解。不同时刻测定生成O2的体积(已折算为标准状况)如下表。
t/min
0
2
4
6
8
10
V(O2)/mL
0.0
9.9
17.2
22.4
26.5
29.9
下列叙述不正确的是(溶液体积变化忽略不计)
A.0~6min的平均反应速率:v(H2O2)≈3.3×10-2mol/(L?min)
B.6~10min的平均反应速率:v(H2O2)<3.3×10-2mol/(L?min)
C.反应至6min时,c(H2O2)=0.3mol/L
D.反应至6min时,H2O2分解了50%
【答案】C
【解析】0~6min时间内,△c(H2O2)=0.002mol÷0.01L=0.2mol/L,所以v(H2O2)=0.2mol/L÷6minmol/(L·min), A正确;随着反应的进行,H2O2的浓度逐渐减小,反应速率减慢,B正确;6min时,c(H2O2)=0.002mol÷0.01L=0.2mol/L, C错误;6min时,H2O2分解率为:=50%, D正确。
【考点定位】本题考查化学反应速率的有关计算。
9.【2014年高考四川卷第7题】在10L恒容密闭容器中充入X(g)和Y(g),发生反应X(g)+Y(g)M(g)+N(g),所得实验数据如下表:
实验
编号
温度/℃
起始时物质的量/mol
平衡时物质的量/mol
n(X)
n(Y)
n(M)

700
0.40
0.10
0.090

800
0.10
0.40
0.080

800
0.20
0.30
a

900
0.10
0.15
b
下列说法正确的是
A.实验①中,若5min时测得n(M)=0.050mol,则0至5min时间内,用N表示的平均反应速率υ(N)=1.0×10-2mol/(L·min)
B.实验②中,该反应的平衡常数K=2.0
C.实验③中,达到平衡是,X的转化率为60%
D.实验④中,达到平衡时,b>0.060
【答案】C
则同时生成的N的浓度是0.0080mol/L,消耗X与Y的浓度均是0.0080mol/L,因此平衡时X和Y的浓度分别为0.01mol/L-0.0080mol/L=0.002mol/L,0.04mol/L-0.0080mol/L=0.032mol/L,因此反应的平衡常数,B不正确;C、根据反应的化学方程式可知,如果X的转化率为60%,则
X(g) + Y(g)M(g) + N(g)
起始浓度(mol/L) 0.020 0.030 0 0
转化浓度(mol/L) 0.012 0.012 0.012 0.012
平衡浓度(mol/L)0.008 0.018 0.012 0.012
温度不变,平衡常数不变,则,即反应达到平衡状态,因此最终平衡时X的转化率为60%。C正确;D、700℃时
X(g) + Y(g)M(g) + N(g)
起始浓度(mol/L) 0.040 0.010 0 0
转化浓度(mol/L) 0.009 0.009 0.009 0.009
平衡浓度(mol/L)0.031 0.001 0.009 0.009
则该温度下平衡常数,这说明升高温度平衡常数减小,即平衡向逆反应方向移动,因此正方应是放热反应。若容器④中温度也是800℃,由于反应前后体积不变,则与③相比④平衡是等效的,因此最终平衡时M的物质的量b=0.5a=0.06。当温度升高到900℃时平衡显逆反应方向移动,因此b<0.060,D不正确,答案选C。
【考点定位】考查化学反应速率和化学平衡常数的有关判断与计算
10.【2014年高考海南卷第12题】将BaO2放入密闭的真空容器中,反应2BaO2(s) 2BaO(s)+O2(g)达到平衡。保持温度不变,缩小容器容积,体系重新达到平衡,下列说法正确的是
A.平衡常数减小 B.BaO量不变 C.氧气压强不变 D.BaO2量增加
【答案】CD
【考点定位】考查压强与化学平衡常数及平衡移动的关系的知识。
11.【2014年高考上海卷第14题】只改变一个影响因素,平衡常数K与化学平衡移动的关系叙述错误的是
A.K值不变,平衡可能移动 B.K值变化,平衡一定移动
C.平衡移动,K值可能不变 D.平衡移动,K值一定变化
【答案】D
【解析】
A、平衡常数只与温度有关系,温度不变平衡也可能发生移动,则K值不变,平衡可能移动,A正确;B、K值变化,说明反应的温度一定发生了变化,因此平衡一定移动,B正确;C、平衡移动,温度可能不变,因此K值可能不变,C正确;D、平衡移动,温度可能不变,因此K值不一定变化,D不正确,答案选D。
【考点定位】考查平衡常数与平衡移动关系的判断
12.【2014年高考江苏卷第11题】下列有关说法正确的是
A.若在海轮外壳上附着一些铜块,则可以减缓海轮外壳的腐蚀
B.2NO(g)+2CO(g)=N2(g)+2CO2(g)在常温下能自发进行,则该反应的△H>0
C.加热0.1mol/LNa2CO3溶液,CO32-的水解程度和溶液的pH均增大
D.对于乙酸与乙醇的酯化反应(△H<0),加入少量浓硫酸并加热,该反应的反应速率和平衡常数均增大
【答案】C
【考点定位】考查金属腐蚀、反应自发性、外界条件对水解平衡和反应速率以及平衡常数的影响
13.【2014年高考海南卷第14题】(9分)硝基苯甲酸乙酯在OH-存在下发生水解反应:O2NC6H4COOC2H5+OH-O2NC6H4COO-+C2H5OH.两种反应物的初始浓度均为0.050mol/L,15 ℃时测得:O2NC6H4COOC2H5的转化率α随时间变化的数据如表所示。回答下列问题:
t/s
0
120
180
240
330
30
600
700
800
α/%
0
33.0
41.8
48.8
58.0
69.0
70.4
71.0
71.0
(1)列式计算该反应在120~180s与180~240s区间的平均反应速率_______、__________。比较两者大小可得到的结论是_______________________。
(2)列式计算15 ℃时该反应的平衡常数_________________。
(3)为提高O2NC6H4COOC2H5的平衡转化率,除可适当控制反应温度外,还可以采取的措施有_________(要求写出两条)。
【答案】
(1) ; .随着反应的的进行,反应物的浓度降低,反应速率减慢 (2) 或; (3)增加OH-的浓度,移去产物。
【解析】
(1)根据题意结合表格的数据可知在120~180s内的反应速率是
。在180~240s内的反应速率是由反应速率的数值可以看出:随着反应的的进行,反应物的浓度降低,反应速率减慢。(2)在15 ℃时该反应的平衡常数是;
【考点定位】考查化学反应速率的计算、影响化学平衡移动的因素、化学平衡常数的表达式等知识。
14.【2014年高考浙江卷第27题】(14分)煤炭燃烧过程中会释放出大量的SO2,严重破坏生态环境。采用一定的脱硫技术可以把硫元素以CaSO4的形式固定,从而降低SO2的排放。但是煤炭燃烧过程中产生的CO又会与CaSO4发生化学反应,降低脱硫效率。相关反应的热化学方程式如下:
CaSO4(s)+CO(g) CaO(s) + SO2(g) + CO2(g) △H1=218.4kJ·mol-1(反应Ⅰ)
CaSO4(s)+4CO(g)CaS(s) + 4CO2(g) △H2= -175.6kJ·mol-1(反应Ⅱ)
请回答下列问题:
(1)反应Ⅰ能够自发进行的条件是 。
(2)对于气体参与的反应,表示平衡常数Kp时用气体组分(B)的平衡压强p(B)代替该气体物质的量浓度c(B),则反应Ⅱ的Kp= (用表达式表示)。
(3)假设某温度下,反应Ⅰ的速率(v1)大于反应Ⅱ的速率(v2),则下列反应过程能量变化示意图正确的是 。
(4)通过监测反应体系中气体浓度的变化判断反应Ⅰ和Ⅱ是否同时发生,理由是 。
(5)图1为实验测得不同温度下反应体系中CO初始体积百分数与平衡时固体产物中CaS质量百分数的关系曲线。则降低该反应体系中SO2生成量的措施有 。
A.向该反应体系中投入石灰石
B.在合适的温度区间内控制较低的反应温度
C.提高CO的初始体积百分数
D.提高反应体系的温度
(6)恒温恒容条件下,假设反应Ⅰ和Ⅱ同时发生,且v1>v2,请在图2中画出反应体系中c(SO2)随时间t变化的总趋势图。
【答案】(1)高温
(2)
(3)C.
(4) 反应I中生成有SO2,监测SO2与CO2的浓度增加量的比不为1:1,可确定发生两个反应。
(5)A、B、C
(6)
【解析】
(4) 反应I中生成有SO2,监测SO2与CO2的浓度增加量的比即可确定是否发生两个反应。
(5)向该反应体系中投入石灰石,产生CO2,使反应I逆向进行,可降低该反应体系中SO2生成量,A正确;在合适的温度区间内控制较低的反应温度,图中可以看出最低温度的CaS的含量最高,故B正确、D错误;C.图中可以看出,提高CO的初始体积百分数,可以提高CaS的含量,故正确。
(6) 反应Ⅰ的速率(v1)大于反应Ⅱ的速率(v2),故SO2增加的快,反应达到平衡快;随着反应II的进行,CO2的浓度不断增大,使反应I平衡逆向移动。
【考点定位】用NA为阿伏加德罗常数的值来表示微粒数目。
15.【2014年高考全国大纲卷第28题】(15分)
化合物AX3和单质X2在一定条件下反应可生成化合物AX5。回答下列问题:
(1)已知AX3的熔点和沸点分别为-93.6 ℃和76 ℃,AX5的熔点为167 ℃。室温时AX3与气体X2反应生成lmol AX5,放出热量123.8 kJ。该反应的热化学方程式为 。
(2)反应AX3(g)+X2(g)AX5(g)在容积为10 L的密闭容器中进行。起始时AX3和X2均为0.2 mol。反应在不同条件下进行,反应体系总压强随时间的变化如图所示。
①列式计算实验a从反应开始至达到平衡时的反应速率 v(AX5)= 。
②图中3组实验从反应开始至达到平衡时的反应速率v(AX5)由大到小的次序为 (填实验序号);与实验a相比,其他两组改变的实验条件及判断依据是:b 、
c 。
③用p0表示开始时总压强,p表示平衡时总压强,α表示AX3的平衡转化率,则α的表达式为
;实验a和c的平衡转化率:αa为 、αc为 。
【答案】
⑴AX3(l)+X2(g) = AX5(s) ΔH=-123.8KJ·mol-1(2分)
⑵①(3 分)
②bca(2分) b、加人催化剂。反应速率加快,但平衡点没有改变 (2分)
c、 温度升高。反应速率加快,但平衡点向逆反应方向移动(或反应容器的容积和起始物质的量未改变,但起始总压强增大)(2分)
③α=2(1-) (2分) 50% (1分) 40% (1分)
【解析】
⑵①
解:开始时no = 0.4 mol,总压强为160 kPa,平衡时总压强为120 kPa,
则n为:
AX3(g) + X2(g) AX5(g)
起始时no/mol: 0.20 0.20 0
平衡时n/mol:: 0.20 -x 0.20 -x x
(0.20-x)+(0.20-x)+x = 0.30
x = 0.10

③用三段式分析:
AX3(g) + X2(g) AX5(g)
起始时no/mol: 0.20 0.20 0
变化量n/mol:: 0.20α 0.20α 0.20α
平衡时n/mol:: 0.20 -0.20α 0.20 -0.20α 0.20α
据题意有,化简得α=2(1-);
将图中p0、p的数据代入上述计算式得αa=2(1-)=2(1-)=50%;
αc=2(1-)=2(1-)=40%。
【考点定位】本题考查热化学方程式的书写,化学反应速率的计算,化学平衡移动原理的应用,转化率的计算等。
16.【2014年高考广东卷第31题】(16分)
用CaSO4代替O2与燃料CO反应,既可以提高燃烧效率,又能得到高纯CO2,是一种高效、清洁、经济的新型燃烧技术,反应①为主反应,反应②和③为副反应。
①1/4CaSO4(s)+CO(g)1/4CaS(s)+CO2(g) △H1=-47.3kJ/mol
②CaSO4(s)+CO(g)CaO(s)+ CO2(g)+ SO2(g) △H2=+210.5kJ/mol
③CO(g)1/2C(s)+1/2CO2(g) △H3=-86.2kJ/mol
(1)反应2 CaSO4(s)+7CO(g)CaS(s)+CaO(s)+C(s)+6CO2(g)+SO2(g)的△H= (用△H1△H2△H3表示)。
(2)反应①~③的平衡常数的对数lgK随反应温度T的变化曲线见图18.结合各反应的△H,归纳lgK~T曲线变化规律:
a)
b)
(3)向盛有CaSO4的真空恒容容器中充入CO,反应①于900 oC达到平衡,c平衡(CO)=8.0×10-5mol·L-1,计算CO的转化率(忽略副反应,结果保留2位有效数字)。
(4)为减少副产物,获得更纯净的CO2,可在初始燃料中适量加入 。
(5)以反应①中生成的CaS为原料,在一定条件下经原子利用率100%的高温反应,可再生成CaSO4,该反应的化学方程式为 ;在一定条件下CO2可与对二甲苯反应,在其苯环上引入一个羧基,产物的结构简式为 。
【答案】(1)4△H1+△H2+2△H3;
(2)a)、放热反应的lgK随温度升高而下降; b)、放出或吸收热量越大的反应,其lgK受温度影响越大;
(3)99%
(4)CO2
(5)CaS+2O2 CaSO4,
【解析】
(1)根据盖斯定律可得2 CaSO4(s)+7CO(g)CaS(s)+CaO(s)+C(s)+6CO2(g)+SO2(g)的
△H=①×4+②+③×2=4△H1+△H2+2△H3;
(3)由图可知,反应①于900 oC的lgK=2,则K=100, c平衡(CO)=8.0×10-5mol·L-1,平衡时c平衡(CO2)=100×8.0×10-5mol·L-1=8.0×10-3mol·L-1,根据反应1/4CaSO4(s)+CO(g)1/4CaS(s)+CO2(g)可知,消耗CO的浓度是8.0×10-3mol·L-1,则开始时c(CO)=8.0×10-5mol·L-1+8.0×10-3mol·L-1=8.08×10-3mol·L-1,所以CO的转化率为8.0×10-3mol·L-1/8.08×10-3mol·L-1×100%=99%,;
(4)根据方程式可知,二氧化碳中含有气体杂质SO2,可在CO中加入适量的CO2,抑制二氧化硫的产生;
(5)CaS转化为CaSO4,从元素守恒的角度分析,CaS与氧气发生化合反应,原子的利用率100%,生成CaSO4,化学方程式为CaS+2O2 CaSO4,CO2与对二甲苯发生反应,所得产物中含有羧基,因为苯环的氢原子只有1种,所以产物的结构简式只有1种为。
【考点定位】考查盖斯定律的应用,对图像的分析,转化率的计算,化学方程式、结构简式的
书写,物质的判断
17.【2014年高考山东卷第29题】(17分)研究氮氧化物与悬浮在大气中海盐粒子的相互作用时,涉及如下反应:
2NO2(g)+NaCl(s)NaNO3(s)+ClNO(g) K1 ?H < 0 (I)
2NO(g)+Cl2(g)2ClNO(g) K2 ?H < 0 (II)
(1)4NO2(g)+2NaCl(s)2NaNO3(s)+2NO(g)+Cl2(g)的平衡常数K= (用K1、K2表示)。
(2)为研究不同条件对反应(II)的影响,在恒温条件下,向2L恒容密闭容器中加入0.2mol NO和0.1mol Cl2,10min时反应(II)达到平衡。测得10min内v(ClNO)=7.5×10-3mol?L-1?min-1,则平衡后n(Cl2)= mol,NO的转化率а1= 。其它条件保持不变,反应(II)在恒压条件下进行,平衡时NO的转化率а2 а1(填“>”“<”或“=”),平衡常数K2 (填“增大”“减小”或“不变”。若要使K2减小,可采用的措施是 。
(3)实验室可用NaOH溶液吸收NO2,反应为2NO2+2NaOH=NaNO3+NaNO2+H2O。含0.2mol NaOH的水溶液与0.2mol NO2恰好完全反应得1L溶液A,溶液B为0.1mol?L ̄1的CH3COONa溶液,则两溶液中c(NO3 ̄)、c(NO2-)和c(CH3COO ̄)由大到小的顺序为 。(已知HNO2的电离常数Ka=7.1×10-4mol?L ̄1,CH3COOH的电离常数K a=1.7×10-5mol?L ̄1,可使溶液A和溶液B的pH相等的方法是 。
a.向溶液A中加适量水 b.向溶液A中加适量NaOH
c.向溶液B中加适量水 d..向溶液B中加适量NaOH
【答案】(1)K12/ K2
(2)2.5×10-2;75%;>;不变;升高温度
(3)c(NO3 ̄) > c(NO2-) > c(CH3COO ̄);b、c
【解析】
(2)转化的n(Cl2)=1/2×7.5×10-3mol?L-1?min-1×2L×10min=7.5×10-2,则平衡后n(Cl2)=0.1mol—7.5×10-2=2.5×10-2;转化的n(NO)=7.5×10-3mol?L-1?min-1×2L×10min=0.15mol,则NO的转化率а1=0.15mol÷0.2mol×100%=75%;其它条件保持不变,反应(II)在恒压条件下进行,则反应(II)的压强大于反应(I)的压强,则平衡更有利于向右移动,所以平衡时NO的转化率а2 >а1;因为温度不变,所以平衡常数不变;反应(II)?H < 0,为放热反应,所以升高温度,平衡向左移动,K2减小。
(3)根据越弱越水解的规律,CH3COO ̄水解程度大于NO2-的水解程度,所以离子浓度 由大到小的顺序为:c(NO3 ̄) > c(NO2-) > c(CH3COO ̄);因为CH3COO ̄水解程度大于NO2-的水解程度,所以溶液A的pH小于溶液B,向溶液A中加适量NaOH,溶液A的pH增大,向溶液B中加适量水,溶液B的pH减小,故b、c正确。
【考点定位】本题考查反应速率、转化率和平衡常数的计算,化学平衡移动,离子浓度比较。
18.【2014年高考重庆卷第11题】(14分)氢能是重要的新能源。储氢作为氢能利用的关键技术,是当前关注的热点之一。
(1)氢气是清洁能源,其燃烧产物为__________。
(2)NaBH4是一种重要的储氢载体,能与水反应达到NaBO2,且反应前后B的化合价不变,该反应的化学方程式为___________,反应消耗1mol NaBH4时转移的电子数目为__________。
(3)储氢还可借助有机物,如利用环己烷和苯之间的可逆反应来实现脱氢和加氢: 。某温度下,向恒容密闭容器中加入环己烷,起始浓度为a mol/L,平衡时苯的浓度为bmol/L,该反应的平衡常数K=_____。
(4)一定条件下,题11图示装置可实现有机物的电化学储氢(忽略其它有机物)。
①导线中电子移动方向为____________。
②生成目标产物的电极反应式为_________。
③该储氢装置的电流效率=_____(=×100%,计算结果保留小数点后1位)
【答案】(1)水或H2O (2)NaBH4+2H2O=NaBO2+4H2↑;4NA或2.408×1024
(3) mol3/L3 (4)①A→D ②C6H6+6H++6e-=C6H12 ③64.3%
【解析】
(1)氢气的燃烧产物是水。
(3)平衡时苯的浓度是b mol/L,则根据反应的方程式可知消耗环戊烷的浓度是b mol/L,生成氢气的浓度是3 b mol/L,,平衡时环戊烷的浓度为(a-b)mol/L。由于化学平衡常数是在一定条件下,当可逆反应达到平衡状态时,生成物浓度的幂之积和反应物浓度的幂之积的比值,则该温度下反应的平衡常数为=mol3/L3。
③阳极生成2.8mol气体,该气体应该是阳极OH-放电生成的氧气,则转移电子的物质的量=2.8mol×4=11.2mol。设阴极消耗苯的物质的量是xmol,则同时生成 xmol环戊烷,根据电极反应式C6H6+6H++6e-=C6H12可知得到电子是6xmol,根据电子守恒可知,阴极生成氢气是=5.6mol-3xmol,所以 =0.1,解得x=1.2,因此储氢装置的电流效率=×100%=64.3%。
【考点定位】考查氧化还原反应方程式配平和计算、平衡常数计算以及电化学原理的应用与计算
19.【2014年高考北京卷第26题】NH3经一系列反应可以得到HNO3,如下图所示。
(1)I中,NH3 和O2在催化剂作用下反应,其化学方程式是_____________________。
(2)II中,2NO(g)+O22NO2(g)。在其他条件相同时,分别测得NO的平衡转化率在不同压强(P1、P2)下温度变化的曲线(如右图)。
①比较P1、P2的大小关系:________________。
②随温度升高,该反应平衡常数变化的趋势是________________。
(3)III中,降低温度,将NO2(g)转化为N2O4(l),再制备浓硝酸。
①已知:2NO2(g) N2O4(g)△H1
2NO2(g) N2O4(l)△H2
下列能量变化示意图中,正确的是(选填字母)_______________。
②N2O4与O2、H2O化合的化学方程式是_________________。
(4)IV中,电解NO制备 NH4NO3,其工作原理如右图所示,为使电解产物全部转化为NH4NO3,需补充物质A,A是_____________,说明理由:________________。
【答案】(1)4NH3+5O2 4NO+6H2O;
(2)①P1<P2;
②减小;
(3)①A;
②2N2O4+O2+2H2O=4HNO3;
(4)氨气;根据反应8NO+7H2O3NH4NO3+2HNO3,电解产生的HNO3多
【解析】
(1)氨气和氧气在催化剂作用下发氧化还原反应,生成NO和水,化学方程为4NH3+5O2 4NO+6H2O;
(2)①该反应的正反应为气体物质的量减小的反应,其他条件不变时,增大压强,平衡向气体物质的量减小的方向移动,即向正反应方向移动,即压强越高,NO的平衡转化率越大,根据图示知,相同温度下,压强P1时NO的转化率<P2时NO的转化率,故P1<P2;
②其他条件不变时,升高温度,平衡向着吸热反应方向移动,又根据图示知,相同压强下,随着温度的升高,NO的转化率降低,即升高温度,平衡向逆反应方向移动,故逆反应方向为吸热反应,则正反应方向是放热反应,则随着温度的升高,该反应的平衡常数减小;
N2O4(g) N2O4(l) △H3=△H1-△H2,一般来说,物质由气态变为液态,放出热量,即△H3=△H1-△H2<0,即△H1>△H2,由降低温度,将NO2转化为N2O4,可知该反应为放热反应,即0>△H1>△H2,即反应物2NO2(g)的总能量大于生成物N2O4(g)和N2O4(l)的总能量,且前者放出的热量小,故答案为A;
②N2O4与氧气、水反应生成硝酸,化学方程式为:2N2O4+O2+2H2O=4HNO3;
(4)电解NO制备硝酸铵,阳极反应为:NO-3e-+2H2O=NO3-+4H+,阴极反应为:NO+5e-+6H+=NH4++H2O,从两极反应可看出若要使电子得失守恒,阳极产生的NO3-的量大于阴极产生的NH4+的量,总反应为8NO+7H2O3NH4NO3+2HNO3,故应补充适量的氨气。
【考点定位】本题考查氨的催化氧化反应、化学平衡、化学反应中的能量变化、电解知识等内容。
20.【2014年高考新课标Ⅰ卷第28题】乙醇是重要的有机化工原料,可由乙烯直接水合法或间接水合法生产。回答下列问题:
(1)间接水合法是指先将乙烯与浓硫酸反应生成硫酸氢乙酯(C2H5OSO3H)。再水解生成乙醇。写出相应的反应的化学方程式
(2)已知:
甲醇脱水反应①2CH3OH(g)=CH3OCH3(g)+H2O(g)?△H1=-23.9KJ·mol-1
甲醇制烯烃反应②2CH3OH(g)=C2H4 (g)+2H2O(g)? △H2=-29.1KJ·mol-1
乙醇异构化反应③CH3CH2OH(g)=CH3OCH3(g))? △H3=+50.7KJ·mol-1
则乙烯气相直接水合反应C2H4 (g)+H2O(g)=C2H5OH(g)的?△H= KJ·mol-1
与间接水合法相比,气相直接水合法的优点是: 。
(3)下图为气相直接水合法中乙烯的平衡转化率与温度、压强的关系(其中n(H2O)︰n(C2H4)=1︰1)
①列式计算乙烯水合制乙醇反应在图中A点的平衡常数K= (用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)
②图中压强P1、P2、P3、P4的大小顺序为: ,理由是:
③气相直接水合法党采用的工艺条件为:磷酸/硅藻土为催化剂,反应温度290 ℃,压强6.9MPa,n(H2O)︰n(C2H4)=0.6︰1。乙烯的转化率为5℅。若要进一步提高乙烯的转化率,除了可以适当改变反应温度和压强外,还可以采取的措施有: 、 。
【答案】(1)C2H4+H2SO4= C2H5OSO3H; C2H5OSO3H+H2O=C2H5OH+ H2SO4;
(2) -45.5 污染小,腐蚀性小等;(3)①K=0.07(MPa)-1; ②P1< P2< P3< P4;反应分子数减少,相同温度下,压强升高,乙烯转化率提高; ③将产物乙醇液化转移去,增加n(H2O):n(C2H4)的比。
【解析】
K(MPa)-1; ②在相同的温度下由于乙烯是平衡转化率是P1< P2< P3< P4;由方程式C2H4 (g)+H2O(g)=C2H5OH(g)可知该反应的正反应是气体体积减小的反应,所以增大压强,平衡正向移动,乙烯的转化率提高,因此压强关系是:P1< P2< P3< P4; ③若要进一步提高乙烯的转化率,除了可以适当改变反应温度和压强外,还可以采取的措施有改变物质的浓度,如从平衡体系中将产物乙醇分离出去,或增大水蒸气的浓度,改变二者的物质的量的比等等。
【考点定位】考查化学方程式的书写、压强对平衡移动的影响、物质制取方案的设计与比较、反应热的计算、化学平衡常数的计算及提高产品产率的方法的探究的知识。
21.【2014年高考福建卷第24题】铁及其化合物与生产、生活关系密切。
(1)下图是实验室研究海水对铁闸不同部位腐蚀情况的剖面示意图。
①该电化腐蚀称为 。
②图中A、B、C、D四个区域,生成铁锈最多的是 (填字母)。
(2)用废铁皮制取铁红(Fe2O3)的部分流程示意图如下:
①步骤I若温度过高,将导致硝酸分解。硝酸分解的化学方程式为 。
②步骤Ⅱ中发生反应:4Fe(NO3)2+O2+(2n+4)H2O=2Fe2O3·nH2O+8HNO3,反应产生的HNO3又将废铁皮中的铁转化为Fe(NO3)2,该反应的化学方程式为 。
③上述生产流程中,能体现“绿色化学”思想的是
1.在恒温恒容的密闭体系中,可逆反应:A(s)+2B(g) 2C(g);ΔH<0,不能作为该反应达到化学平衡的标志的是(  )
①v正(B)=v逆(C) ②n(B)∶n(C)=1∶1 ③容器内压强不再改变 ④容器内气体的密度不再改变 ⑤容器内混合气体的平均相对分子质量不再改变
A.②③④⑤    B.②③
C.①③④ D.全部
解析:选B。①二者化学计量数相同,说明正逆反应速率相等,可做标志;②物质的量相等不能说明反应到平衡;③反应前后气体体积不变,所以压强不能做标志;④气体的总质量随着反应而改变,所以密度不变可做标志;⑤平均相对分子质量=气体总质量/气体总物质的量,由于气体总物质的量不变,而气体的总质量随时改变,所以平均相对分子质量不变可做标志。所以选B。
2.下列说法正确的是(  )
A.增大压强,活化分子百分数增加,化学反应速率一定增大
B.升高温度,单位体积内分子总数不变,但活化分子数增加了
C.分子间所有的碰撞为有效碰撞
D.加入反应物,使活化分子百分数增加,化学反应速率增大
3.维持体系总压强p恒定,在温度T时,A的起始物质的量为n、容器起始体积为V,发生A(g) ?B(g)+C(g)反应。已知A的平衡转化率为α,则在该温度下反应的平衡常数K为(用α等符号表示)(  )
A.nα2/(1 -α) V B.nα2/(1-α2) V
C.nα2/(1+α2) V D.nα2/(1 +α)2V
解析:选B。      A(g) ??B(g)+C(g)
起始量(mol) n 0 0
转化量(mol) nα nα nα
平衡量(mol) n-nα nα nα
压强不变,则平衡时容器的容积是(1+α)V,所以该温度下的平衡常数为K==,答案选B。
4.298 K时,在2 L固定体积的密闭容器中,发生可逆反应:2NO2(g) N2O4(g) ΔH=-a kJ/mol(a>0)。N2O4的物质的量浓度随时间变化如图。达平衡时,N2O4的浓度为NO2的2倍,若反应在398 K进行,某时刻测得n(NO2)=0.6 mol,n(N2O4)=1.2 mol,则此时,下列大小关系正确的是(  )
A.v(正)>v(逆)
B.v(正)C.v(正)=v(逆)
D.v(正)、v(逆)大小关系不确定
5.在373 K时,把0.5 mol N2O4气体通入体积为5 L的真空密闭容器中,立即出现红棕色。反应进行到2 s时,NO2的浓度为0.02 mol/L。在60 s时,体系已达到平衡,此时容器内压强为反应前的1.6倍。下列说法正确的是(  )
A.前2 s,以N2O4浓度变化表示的平均反应速率为0.01 mol·L-1·s-1
B.在2 s时,体系内压强为反应前的1.1倍
C.平衡时,体系内含N2O4 0.25 mol
D.平衡时,若往容器内充入氮气,则可提高N2O4的转化率
解析:选B。A.2 s时,NO2的浓度为0.02 mol/L,则转化的N2O4的浓度为0.01 mol/L,则前2 s,以N2O4的浓度变化表示的平均反应速率为0.01 mol/L÷2 s=0.005 mol/(L·s),A错误;B.由N2O42NO2,2 s时NO2的物质的量为0.1 mol,N2O4的物质的量为0.5 mol-0.01 mol/L×5 L=0.45 mol,由反应前后的物质的量之比等于压强之比,则在2 s时体系内的压强为开始时的(0.1 mol+0.45 mol)÷0.5 mol=1.1倍,B正确;C.设转化的N2O4的物质的量为x,则平衡时N2O4的物质的量为0.5 mol-x,NO2的物质的量为2x,由平衡时容器内压强为开始时的1.6倍,则(0.5 mol-x+2x)÷0.5 mol=1.6,解得x=0.3 mol,则平衡时N2O4的物质的量为0.5 mol-x=0.5 mol-0.3 mol=0.2 mol,C错误;D.在恒容条件下,向容器中充入氮气,压强虽然增大,但体积不变,各组分的浓度不变,平衡不移动,则N2O4的转化率不变,D不变;答案选B。
6.下列有关平衡常数的说法中,正确的是(  )
A.改变条件,反应物的转化率增大,平衡常数也一定增大
B.反应2NO2(g)===N2O4(g) ΔH<0,升高温度该反应平衡常数增大
C.对于给定可逆反应,温度一定时,其正、逆反应的平衡常数相等
D.平衡常数为K=的反应,化学方程式为CO2+H2CO+H2O
7.某温度下,在2 L的密闭容器中,加入1 mol X (g)和2 mol Y(g)发生反应:X(g)+mY(g)3Z(g),平衡时,X、Y、Z的体积分数分别为30%、60%、10%。在此平衡体系中加入1 mol Z(g),再次达到平衡后,X、Y、Z的体积分数不变。下列叙述不正确的是(  )
A.m=2
B.两次平衡的平衡常数相同
C.X与Y的平衡转化率之比为1∶1
D.第二次平衡时,Z的浓度为0.4 mol·L-1
解析:选D。A.根据再次加入1 mol Z(g),平衡后,X、Y、Z的体积分数不变,可知该反应是一个反应前后气体分子数相等的反应,因此m=2。B.由于温度没有变化,故两次平衡的平衡常数不变。C.因为是按照化学方程式中化学计量数之比充入的反应物,因此二者的平衡转化率相等。D.该反应前后气体分子数不变,因此反应后气体的物质的量与反应前一样,都为4 mol,而平衡后Z的体积分数为10%,平衡时Z的物质的量为4 mol×10%=0.4 mol,容器体积为2 L,Z的浓度为0.2 mol·L-1。
8.硝酸生产中,500 ℃时,NH3和O2可能发生如下反应:
①4NH3 (g)+5O2(g) 4NO(g)+6H2O(g)
ΔH=-9 072 kJ·mol-1 K=1.1×1026
②4NH3(g)+4O2(g) 2N2O(g)+6H2O(g)
ΔH=-1104.9 kJ·mol-1 K=4.4×1028
③4NH3(g)+3O2(g) 2N2 (g)+6H2O(g)
ΔH=-1 269.02 kJ·mol-1 K=7.1×1034
其中,②、③是副反应。若要减少副反应,提高单位时间内NO的产率,最合理的措施是(  )
A.增大O2浓度
B.使用合适的催化剂
C.减小压强
D.降低温度
9.汽车尾气中,产生NO的反应为:N2(g)+O2(g) 2NO(g),一定条件下,等物质的量的N2(g)和O2(g)在恒容密闭容器中反应,如图曲线a表示该反应在温度T下N2的浓度随时间的变化,曲线b表示该反应在某一起始条件改变时N2的浓度随时间的变化。下列叙述正确的是(  )
A.温度T下,该反应的平衡常数K=
B.温度T下,随着反应的进行,混合气体的密度减小
C.曲线b对应的条件改变可能是加入了催化剂
D.若曲线b对应的条件改变是温度,可判断该反应的ΔH <0
解析:选A。A.根据图像可知N2、O2的起始浓度为c0 mol·L-1,平衡浓度为c1 mol·L-1,NO的平衡浓度为2(c0-c1)mol·L-1,则平衡常数为:[2(c0-c1)]2/c=,正确;B.容器恒容,气体的体积不变,根据质量守恒定律,气体的总质量不变,则混合气体的密度不变,错误;C.根据图像可知曲线b对应的平衡状态,N2的平衡浓度更小,与曲线a相比化学平衡发生了移动,改变的条件不是加入催化剂,错误;D.由图像可知相同时间内曲线b对应的反应速率更大,若曲线b对应的条件改变是温度,则温度升高,N2的平衡浓度减小,则平衡向正反应方向移动,所以该反应的ΔH>0,错误。
10.某温度下,密闭容器中,发生如下可逆反应:2E(g) F(g)+xG(g);ΔH<0。若起始时E浓度为a mol·L-1,F、G浓度均为0,达平衡时E浓度为0.5a mol·L-1;若E的起始浓度改为2a mol·L-1,F、G浓度仍为0,当达到新的平衡时,下列说法正确的是(  )
A.若x=1,容器体积保持不变,新平衡下E的体积分数为50%
B.升高温度时,正反应速率加快、逆反应速率减慢
C.若x=2,容器体积保持不变,新平衡下F的平衡浓度为0.5a mol·L-1
D.若x=2,容器压强保持不变,新平衡下E的物质的量为a mol
11.在密闭容器中,一定条件下进行如下反应:NO(g)+CO(g)N2(g)+CO2 (g) ΔH=-373.2 kJ/mol,达到平衡后,为提高NO的转化率和该反应的速率,可采取的措施是(  )
A.加催化剂同时升高温度
B.加催化剂同时增大压强
C.升高温度同时充入N2
D.降低温度同时增大压强
解析:催化剂不能改变平衡状态,正反应放热,升高温度平衡向逆反应方向移动,NO转化率降低,A错误;催化剂不能改变平衡状态,正反应体积减小,增大压强平衡向正反应方向移动,NO转化率增大,B正确;正反应放热,升高温度同时充入N2平衡向逆反应方向移动,NO转化率降低,C错误;降低温度同时增大压强平衡向正反应方向移动,但反应速率不一定增大,D错误。
答案:B
12.一定温度下在一容积不变的密闭容器中发生可逆反应2X(g)Y(g)+Z(s),以下不能说明该反应达到化学平衡状态的是(  )
A.混合气体的密度不再变化
B.反应容器中Y的质量分数不变
C.X的分解速率与Y的消耗速率相等
D.单位时间内生成1 mol Y的同时生成2 mol X
解析:X的分解速率与Y的消耗速率之比为2∶1时,才能说明反应达到平衡状态,故C项错误。
答案:C
13.在2 L的恒容容器中,充入1 mol A和3 mol B,并在一定条件下发生如下反应:A(s)+3B(g)2C(g),若经3 s后测得C的浓度为0.6 mol·L-1,下列选项说法正确的组合是(  )
①用B表示的反应速率为0.4 mol·L-1·s-1
②3 s时生成C的物质的量为1.2 mol
③3 s时B的浓度为0.6 mol·L-1
A.①②      B.①③
C.②③ D.①②③
答案:C
14.一定条件下,在密闭容器里进行如下可逆反应:S2Cl2(橙黄色液体)+Cl2(气)2SCl2(鲜红色液体) ΔH=-61.16 kJ·mol-1。下列说法正确的是(  )
A.增大压强,平衡常数将增大
B.达到平衡时,单位时间里消耗n mol S2Cl2的同时也生成n mol Cl2
C.达到平衡时,若升高温度,氯气的百分含量减小
D.加入氯气,平衡向正反应方向移动,氯气的转化率一定升高
解析:平衡常数只与温度有关系,增大压强平衡常数不变,A错误;B.根据方程式可知单位时间里消耗n mol S2Cl2的同时生成n mol Cl2,Cl2的生成与消耗的物质的量相同,反应处于平衡状态,B正确;正反应是放热反应,升高温度平衡向逆反应方向移动,氯气的含量增大,C错误;加入氯气,平衡向正反应方向移动,S2Cl2的转化率增大,氯气的转化率降低,D错误。
答案:B
15.常温常压下,向2 L的恒温密闭容器中投入2 mol A和1 mol B,发生可逆反应 3A(g)+2B(s)2C(g)+D(g) ΔH=-a kJ/mol。5 min后达平衡,测得容器中n(C)=0.8 mol。则下列说法正确的是(  )
A.使用催化剂或缩小容器体积,该平衡均不会移动
B.3v(A)=2v(C)=0.16 mol/(L·min)
C.升高温度,该平衡正向速率减小,故平衡逆向移动
D.该可逆反应达平衡后,放出a kJ的热能(假设化学能全转化为热能)
答案:A
16.某温度下,向2 L恒容密闭容器中充入1.0 mol A和1.0 mol B,反应A(g)+B(g)―→C(g)经过一段时间后达到平衡。反应过程中测定的部分数据见下表,下列说法正确的是(  )
t/s
0
5
15
25
35
n(A)/mol
1.0
0.85
0.81
0.80
0.80
A.反应在前5 s的平均速率v(A)=0.17 mol·L-1·s-1
B.保持其他条件不变,升高温度,平衡时c(A)=0.41 mol·L-1,则反应的ΔH>0
C.相同温度下,起始时向容器中充入2.0 mol C达到平衡时,C的转化率大于80%
D.相同温度下,起始时向容器中充入0.20 mol A、0.20 mol B和1.0 mol C,反应达到平衡前v(正)解析:A的物质的量达到0.80 mol反应达到平衡状态,则
 A(g)+B(g) C(g)
起始量/(mol)  1.0  1.0   0
变化量/(mol) 0.20 0.20 0.20
平衡量/(mol) 0.80 0.80 0.20
代入求平衡常数:K=0.625。
反应在前5 s的平均速率v(A)=0.015 mol·L-1·s-1,故A错误;保持其他条件不变,升高温度,平衡时c(A)=0.41 mol·L-1,A物质的量为0.41 mol/L×2 L=0.82 mol>0.80 mol,说明升温平衡逆向移动,正反应是放热反应,则反应的ΔH<0,故B错误;等效于起始加入2.0 mol A和2.0 mol B,与原平衡相比,压强增大,平衡向正反应方向移动,平衡时的AB转化率较原平衡高,故平衡时AB的物质的量小于1.6 mol,C的物质的量大于0.4 mol,即相同温度下,起始时向容器中充入2.0 mol C,达到平衡时,C的物质的量大于0.4 mol,参加反应的C的物质的量小于1.6 mol,转化率小于80%,故C错误;相同温度下,起始时向容器中充入0.20 mol A、0.20 mol B和1.0 mol C,Qc=50>K,反应逆向进行,反应达到平衡前v(正)<v(逆),故D正确。
答案:D
17.用CO和H2在催化剂的作用下合成甲醇,发生的反应如下:CO(g)+2H2(g)===CH3OH(g)。在体积一定的密闭容器中按物质的量之比1∶2充入CO和H2,测得平衡混合物中CH3OH的体积分数在不同压强下随温度的变化如图所示。下列说法正确的是(  )
A.该反应的ΔH<0,且p1<p2
B.反应速率:v逆(状态A)>v逆(状态B)
C.在C点时,CO转化率为75%
D.在恒温恒压条件下向密闭容器中充入不同量的CH3OH,达平衡时CH3OH的体积分数不同
向密闭容器充入了1 mol CO和2 mol H2,CO的转化率为x,则  CO(g)+2H2(g) CH3OH(g)
起始/(mol)  1    2     0
变化/(mol) x 2x x
平衡/(mol) 1-x 2-2x x
在C点时,CH3OH的体积分数==0.5,解得x=0.75,故C正确;由等效平衡可知,在恒温恒压条件下向密闭容器中充入不同量的CH3OH,达平衡时CH3OH的体积分数都相同,故D错误。
答案:C
18.(1)在一体积为10 L的容器中,通入一定量的CO和H2O,在850 ℃时发生如下反应:CO(g)+H2O(g) ??CO2(g)+H2(g);ΔH<0。CO和H2O浓度变化如图,则0~4 min的平均反应速率v(CO)=____ mol/(L·min)。
t1 ℃时物质浓度(mol/L)的变化
时间(min)
CO
H2O
CO2
H2
0
0.200
0.300
0
0
2
0.138
0.238
0.062
0.062
3
c1
c2
c3
c4
4
c1
c2
c3
c4
5
0.116
0.216
0.084
6
0.096
0.266
0.104
(2)t1 ℃(高于850 ℃)时,在相同容器中发生上述反应,容器内各物质的浓度变化如上表。请回答:
①表中3~4 min之间反应处于________状态;c1数值________0.08 mol/L(填大于、小于或等于)。
②反应在4~5 min间,平衡向逆方向移动,可能的原因是________(单选),表中5~6 min之间数值发生变化,可能的原因是________(单选)。
a.增加了水蒸气的量  b.降低温度
c.使用催化剂 d.增加氢气浓度
应该是增大了氢气浓度,平衡向逆反应方向移动,答案选d。根据表中数据可知,5~6 min是CO的浓度减小,而水蒸气和氢气的浓度增大,说明改变的条件是增大了水蒸气的浓度,平衡向正反应方向移动,答案选a。
答案:(1) 0.03 (2) ①平衡 大于 ②d a
19.一氧化碳是一种用途广泛的化工基础原料。有机物加氢反应中镍是常用的催化剂。但H2中一般含有微量CO会使催化剂镍中毒,在反应过程中消除CO的理想做法是投入少量SO2,为弄清该方法对催化剂的影响,查得资料如下:
则:(1)① 不用通入O2氧化的方法除去CO的原因是 ______________________________。
②SO2(g)+2CO(g)===S(s)+2CO2(g) ΔH=________。
(2)工业上用一氧化碳制取氢气的反应为:CO(g)+H2O(g) CO2(g)+H2(g),已知420 ℃时,该反应的化学平衡常数K=9。如果反应开始时,在2 L的密闭容器中充入CO和H2O的物质的量都是0.60 mol,5 min末达到平衡,则此时CO的转化率为________,H2的平均生成速率为________ mol·L-1·min-1。
(3)为减少雾霾、降低大气中有害气体含量, 研究机动车尾气中CO、NOx及CxHy的排放量意义重大。机动车尾气污染物的含量与空/燃比 (空气与燃油气的体积比)的变化关系示意图如图所示:
①随空/燃比增大,CO和CxHy的含量减少的原因是
________________________________________________。
②当空/燃比达到15后,NOx减少的原因可能是____________________________________________。
的浓度为x
     CO(g) + H2O(g) CO2(g)+H2(g)
0.30 0.30 0 0
x x x x
0.30-x 0.30-x x x
K=9.0=,x=0.225,
所以CO的转化率α(CO)=×100%=75%,
氢气的生成速率v(H2)=
=0.045 mol·L-1·min-1;(3)①空/燃比增大,燃油气燃烧更充分,故CO、CxHy含量减少;②反应N2(g)+O2(g) 2NO(g)是吸热反应,当空/燃比大于15后,由于燃油气含量减少,燃油气燃烧放出的热量相应减少,环境温度降低。
答案:(1)① Ni会与氧气反应 ②-270.0 kJ·mol-1
(2)75% 0.045
(3)①空/燃比增大,燃油气燃烧更充分,故CO、CxHy含量减少
②因为反应N2(g)+O2(g) ??2NO(g)是吸热反应,当空/燃比大于15后,由于燃油气含量减少,燃油气燃烧放出的热量相应减少,环境温度降低,使该反应不易进行,故NOx减少
20.Ⅰ.为减少碳排放,科学家提出利用CO2和H2反应合成甲醇,其反应原理为CO2(g)+3H2(g) ?CH3OH(g)+H2O(g)。
(1)上述反应常用CuO和ZnO的混合物作催化剂。经研究发现,催化剂中CuO的质量分数对CO2的转化率和CH3OH的产率有明显影响。实验数据如表所示:
根据数据表判断,催化剂中CuO的最佳质量分数为________。
(2)已知:①CO(g)+H2O(g) ??CO2(g)+H2(g) ΔH1=-41 kJ·mol-1;
②CO(g)+2H2(g)===CH3OH(g)
ΔH2=-91 kJ·mol-1。
写出由CO2和H2制备甲醇蒸气并产生水蒸气的热化学方程式:
_____________________________________________________。
(3)甲醇是清洁能源。某甲醇燃料电池的电解质为稀硫酸,其能量密度为5.93 kW·h·kg-1。该电池的负极反应式为______________。若甲醇的燃烧热为ΔH=-726.5 kJ·mol-1,该电池的能量利用率为________(结果精确到小数点后1位数字)。(已知1 kW·h=3.6×106 J)
Ⅱ.利用CO和H2在催化剂的作用下合成甲醇,发生如下反应:CO(g)+2H2(g) ?CH3OH(g)。在体积一定的密闭容器中按物质的量之比1∶2充入CO和H2,测得平衡混合物中CH3OH的体积分数在不同压强下随温度的变化情况如图1所示。现有两个体积相同的恒容密闭容器甲和乙,向甲中加入1 mol CO和2 mol H2,向乙中加入2 mol CO和4 mol H2,测得不同温度下CO的平衡转化率如图2所示。
(1)该反应的ΔH________(填“>”、“<”或“=”,后同)0,p1________p2。
(2)达到平衡时,反应速率:A点________B点。平衡常数:C点________D点。
(3)在C点时,CO的转化率为________。
(4)L、M两点容器内压强:p(M)________2p(L)。
Ⅱ.(1)从图示可以看出,随温度升高,平衡混合物中CH3OH的体积分数不断减小,说明该反应为放热反应,ΔH<0;因为该反应是气体体积缩小的反应,图示中从C点到B点,平衡混合物中CH3OH的体积分数增大,反应向正反应方向移动,所以p1>p2。(2)A点与B点相比较,B点压强大、温度高,反应速率快;C点与D点相比较,虽然压强不同,但温度相同,所以平衡常数相同。(3)假设CO的转化率为x,CO、H2的起始物质的量分别为1 mol、2 mol,
      CO(g) + 2H2(g) ? CH3OH(g)
起始物质的量: 1 mol 2 mol 0
变化物质的量: x mol 2x mol x mol
平衡物质的量: (1-x)mol (2-2x)mol x mol
根据题意:x mol÷[(1-x)mol+(2-2x)mol+x mol]×100%=50%,x=0.75。
(4)如果不考虑平衡移动,容器乙中气体总物质的量是容器甲中气体总物质的量的两倍,p(M)=2p(L),但现在容器乙温度高,反应又是放热反应,升高温度平衡向逆反应方向移动,气体的物质的量增加,所以p(M)>2p(L)。
答案:Ⅰ.(1)50% (2)CO2(g)+3H2(g)===CH3OH(g)+H2O(g) ΔH=-50 kJ·mol-1 (3)CH3OH-6e-+H2O===CO2↑+6H+ 94.0%
Ⅱ.(1)< > (2)< = (3)75% (4)>
21.无色气体N2O4是一种强氧化剂,为重要的火箭推进剂之一。N2O4与NO2转换的热化学方程式为N2O4(g)2NO2(g) ΔH=+24.4 kJ/mol。
(1)将一定量N2O4投入固定容积的真空容器中,下述现象能说明反应达到平衡的是 _________。
a.v正(N2O4)=2v逆(NO2)
b.体系颜色不变
c.气体平均相对分子质量不变
d.气体密度不变
达到平衡后,保持体积不变升高温度,再次到达平衡时,混合气体颜色 ____(填 “变深”“变浅”或“不变”),判断理由_______。
(2)平衡常数K可用反应体系中气体物质分压表示,即K表达式中用平衡分压代替平衡浓度,分压=总压×物质的量分数[例如:p(NO2)=p总×x(NO2)]。写出上述反应平衡常数Kp表达式 _______________________(用p总、各气体物质的量分数x表示);影响Kp的因素_________________。
(3)上述反应中,正反应速率v正=k正·p(N2O4),逆反应速率v逆=k逆·p2(NO2),其中k正、k逆为速率常数,则Kp为____(以k正、k逆表示)。若将一定量N2O4投入真空容器中恒温恒压分解(温度298 K、压强100 kPa),已知该条件下k正=4.8×104 s-1,当N2O4分解10%时,v正=______________kPa·s-1。
(4)真空密闭容器中放入一定量N2O4,维持总压强p0恒定,在温度为T时,平衡时N2O4分解百分率为α。保持温度不变,向密闭容器中充入等量N2O4,维持总压强在2p0条件下分解,则N2O4的平衡分解率的表达式为__________________________。
N2O4(g)2NO2(g) ΔH=+24.4 kJ/mol,正反应是吸热反应,达到平衡后,保持体积不变升高温度,平衡正向移动,NO2浓度增大,则混合气体颜色变深。
(2)平衡常数Kp表达式;影响平衡常数K的因素是温度,所以影响Kp的因素也是温度。
(3)上述反应中,正反应速率v正=k正·p(N2O4),逆反应速率v逆=k逆·p2(NO2),其中k正、k逆为速率常数,平衡时v正=v逆,k正·p(N2O4)=k逆p2(NO2),Kp为。若将一定量N2O4投入真空容器中恒温恒压分解(温度298 K、压强100 kPa),已知该条件下k正=4.8×104 s-1。当N2O4分解10%时,v正=4.8×104×100 kPa×=3.9×106 kPa·s-1。(4)真空密闭容器中放入一定量N2O4,维持总压强p0恒定,设N2O4初始浓度为x,列式:
   N2O4(g) 2NO2(g)
 起始 x     0
  转化 αx 2αx
平衡 x-αx 2αx
向密闭容器中充入等量N2O4,维持总压强在2p0条件下,则N2O4初始浓度为2x,列式:
N2O4(g) 2NO2(g)
起始/(mol)  2x      0
转化/(mol) β×2x β×4x
平衡/(mol) 2x-β×2x β×4x
=,β=。
答案:(1)bc 变深 正反应是吸热反应,其他条件不变,温度升高平衡正向移动,
c(NO2)增加,颜色加深
(2)(p总·x)2(NO2)/x(N2O4) 温度
(3)k正/k逆 3.9×106 (4)
22.生产中可用双氧水氧化法处理电镀含氰废水,某化学兴趣小组模拟该法探究有关因素对破氰反应速率的影响(注:破氰反应是指氧化剂将CN-氧化的反应)。
【相关资料】
①氰化物主要是以CN-和[Fe(CN)6]3-两种形式存在。
②Cu2+可作为双氧水氧化法破氰处理过程中的催化剂;Cu2+在偏碱性条件下对双氧水分解影响较弱,可以忽略不计。
③[Fe(CN)6]3-较CN-难被双氧水氧化,且pH越大,[Fe(CN)6]3-越稳定,越难被氧化。
【实验过程】
在常温下,控制含氰废水样品中总氰的初始浓度和催化剂Cu2+的浓度相同,调节含氰废水样品不同的初始pH和一定浓度双氧水溶液的用量,设计如下对比实验:
(1)请完成以下实验设计表(表中不要留空格)。
实验序号
实验
目的
初始
pH
废水
样品
体积/mL
CuSO4
溶液的
体积/
mL
双氧水
溶液的
体积/
mL
蒸馏水
的体积/
mL

为以下实验
操作参考
7
60
10
10
20

废水的初始
pH对破氰
反应速率的影响
12
60
10
10
20

________
7
60
______
______
10
实验测得含氰废水中的总氰浓度(以CN-表示)随时间变化关系如图所示。
(2)实验①中20~60 min时间段反应速率:v(CN-)=______mol·L-1·min-1。
(3)实验①和实验②结果表明,含氰废水的初始pH增大,破氰反应速率减小,其原因可能是
____________________(填一点即可)。
在偏碱性条件下,含氰废水中的CN-最终被双氧水氧化为HCO,同时放出NH3,试写出该反应的离子方程式:____________。
(4)该兴趣小组同学要探究Cu2+是否对双氧水氧化法破氰反应起催化作用,请你帮助他们设计实验并验证上述结论,完成下表中内容(已知:废水中的CN-浓度可用离子色谱仪测定)。
实验步骤(不要写出具体操作过程)
预期实验现象
和结论
(2)根据v===0.017 5 mol·L-1·min-1。
(3)pH越大,[Fe(CN)6]3-越稳定,越难被氧化,所以破氰反应速率减小;因为氰废水中的CN一最终被双氧水氧化为HCO,其中的碳由+2价变成+4价,1 mol CN-反应转移2 mol的电子,而过氧化氢1 mol也转移2 mol的电子,所以CN一和H2O2的物质的量之比为1∶1,所以反应的离子方程式为CN-+H2O2+H2O===NH3↑+HCO。
(4)分别取温度相同、体积、浓度相同的含氰废水的试样两等份,滴加过氧化氢,一份中加入少量的无水硫酸铜粉末,另一份不加,用离子色谱仪测定废水中的CN一浓度,如果在相同时间内,甲试管中的CN-浓度小于乙试管中的CN-浓度,则Cu2+对双氧水破氰反应起催化作用,反之则不起催化作用。
答案:(1)双氧水的浓度对破氰反应速率的影响 10 20 (2)0.017 5
(3)初始pH增大,催化剂Cu2+会形成Cu(OH)2沉淀,影响了Cu2+的催化作用(或初始pH增大,[Fe(CN)6]3-较中性和酸性条件下更稳定,难以氧化)
CN-+H2O2+H2O===NH3↑+HCO
(4)
实验方案(不要求写出具体操作过程)
预期实验现象和结论
分别取等体积、等浓度的含氰废水于甲、乙两支试管中,再分别加入等体积、等浓度的双氧水溶液,只向甲试管中加入少量的无水硫酸铜粉末,用离子色谱仪测定相同反应时间内两支试管中的CN-浓度
相同时间内,若甲试管中的CN-浓度小于乙试管中的CN-浓度,则Cu2+对双氧水破氰反应起催化作用;若两试管中的CN-浓度相同,则Cu2+对双氧水破氰反应不起催化作用

展开更多......

收起↑

资源列表