资源简介 南通市丰利中学化学组高一备课组教案 选修3《物质结构与性质》第二章 分子结构与性质教材分析:本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用第一节 共价键第一课时教学目标:1、复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。2、知道共价键的主要类型δ键和π键。3、说出δ键和π键的明显差别和一般规律。教学重点、难点:价层电子对互斥模型教学过程:[复习引入]NaCl、HCl的形成过程[设问]前面学习了电子云和轨道理论,对于HCl中H、Cl原子形成共价键时,电子云如何重叠?例:H2的形成[讲解、小结][板书]1、 δ键:(以“头碰头”重叠形式)a、特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键的图形不变,轴对称图形。b、种类:S-Sδ键 S-Pδ键 P-Pδ键[过渡]P电子和P电子除能形成δ键外,还能形成π键[板书]2、 π键[讲解]a.特征:每个π键的电子云有两块组成,分别位于有两原子核构成平面的两侧,如果以它们之间包含原子核的平面镜面,它们互为镜像,这种特征称为镜像对称。3、 δ键和π键比较①重叠方式 δ键:头碰头 π键:肩并肩②δ键比π键的强度较大③成键电子: δ键 S-S S-P P-P π键 P-P④δ键成单键 π键成双键、叁键(双键中含有一个δ键和一个π键,叁键中含有一个δ键和两个π键)4.共价键的特征饱和性、方向性[练习]1.下列关于化学键的说法不正确的是A.化学键是一种作用力B.化学键可以是原子间作用力,也可以是离子间作用力C.化学键存在于分子内部D.化学键存在于分子之间2.对δ键的认识不正确的是A.δ键不属于共价键,是另一种化学键B.S-Sδ键与S-Pδ键的对称性相同C.分子中含有共价键,则至少含有一个δ键D.含有π键的化合物与只含δ键的化合物的化学性质不同3.下列物质中,属于共价化合物的是A.I2 B.BaCl2 C.H2SO4 D.NaOH4.下列化合物中,属于离子化合物的是A.KNO3 B.BeCl C.KO2 D.H2O25.写出下列物质的电子式。H2、N2、HCl、H2O6.用电子式表示下列化合物的形成过程 HCl、NaBr、MgF2、Na2S、CO2第二课时教学目标:1、认识键能、键长、键角等键参数的概念2、能用键参数――键能、键长、键角说明简单分子的某些性质3、知道等电子原理,结合实例说明“等电子原理的应用”教学难点、重点:键参数的概念,等电子原理教学过程:创设问题情境N2与H2在常温下很难反应,必须在高温下才能发生反应,而F2与H2在冷暗处就能发生化学反应,为什么?学生讨论小结:引入键能的定义板书二、键参数1、键能①概念:气态基态原子形成1mol化学键所释放出的最低能量。②单位:kJ/mol[生阅读书33页,表2-1]回答:键能大小与键的强度的关系?(键能越大,化学键越稳定,越不易断裂) 键能化学反应的能量变化的关系?(键能越大,形成化学键放出的能量越大)①键能越大,形成化学键放出的能量越大,化学键越稳定。[过渡]2、键长①概念:形成共价键的两原子间的核间距②单位:1pm(1pm=10-12m)③键长越短,共价键越牢固,形成的物质越稳定[设问]多原子分子的形状如何?就必须要了解多原子分子中两共价键之间的夹角。3、键角:多原子分子中的两个共价键之间的夹角。例如:CO2 结构为O=C=O,键角为180°,为直线形分子。 H2O 键角105°V形CH4 键角109°28′正四面体[小结]键能、键长、键角是共价键的三个参数键能、键长决定了共价键的稳定性;键长、键角决定了分子的空间构型。[板书]三、等电子原理1、等电子体:原子数相同,价电子数也相同的微粒。 如:CO和N2,CH4和NH4++2、等电子体性质相似[阅读课本表2-3][小结]师与生共同总结本节课内容。[练习]1、下列说法中,错误的是A.键长越长,化学键越牢固B.成键原子间原子轨道重叠越多,共价键越牢固C.对双原子分子来讲,键能越大,含有该键的分子越稳定D.原子间通过共用电子对所形成的化学键叫共价键2、能够用键能解释的是A.氮气的化学性质比氧气稳定B.常温常压下,溴呈液体,碘为固体C.稀有气体一般很难发生化学反应D.硝酸易挥发,硫酸难挥发3、与NO3-互为等电子体的是A.SO3 B.BF3 C.CH4 D.NO24、根据等电子原理,下列分子或离子与SO42-有相似结构的是A.PCl5 B.CCl4 C.NF3 D.N25、根据课本中有关键能的数据,计算下列反应中的能量变化:N2(g)+3H2(g)====2NH3(g);△H=2H2(g)+O2(g)===2H2O(g);△H=第二节 分子的立体结构第一课时教学目标:1、认识共价分子的多样性和复杂性;2、初步认识价层电子对互斥模型;3、能用VSEPR模型预测简单分子或离子的立体结构;4、培养学生严谨认真的科学态度和空间想象能力。重点难点:分子的立体结构;利用价层电子对互斥模型预测分子的立体结构教学过程创设问题情境:1、阅读课本P37-40内容;2、展示CO2、H2O、NH3、CH2O、CH4分子的球辊模型(或比例模型);3、提出问题:⑴什么是分子的空间结构?⑵同样三原子分子CO2和H2O,四原子分子NH3和CH2O,为什么它们的空间结构不同?[讨论交流]1、写出CO2、H2O、NH3、CH2O、CH4的电子式和结构式;2、讨论H、C、N、O原子分别可以形成几个共价键;3、根据电子式、结构式描述CO2、H2O、NH3、CH2O、CH4的分子结构。[模型探究]由CO2、H2O、NH3、CH2O、CH4的球辊模型,分析结构不同的原因。[引导交流]引导学生得出由于中心原子的孤对电子占有一定的空间,对其他成键电子对存在排斥力,影响其分子的空间结构。——引出价层电子对互斥模型(VSEPR models)[讲解分析] 价层电子对互斥模型把分子分成两大类:一类是中心原子上的价电子都用于形成共价键。如CO2、CH2O、CH4等分子中的C原子。它们的立体结构可用中心原子周围的原子数来预测,概括如下:ABn 立体结构 范例n=2 直线型 CO2n=3 平面三角形 CH2On=4 正四面体型 CH4另一类是中心原子上有孤对电子(未用于形成共价键的电子对)的分子。如H2O和NH3中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。因而H2O分子呈V型,NH3分子呈三角锥型。(如图)课本P40。[应用反馈]应用VSEPR理论判断下表中分子或离子的构型。进一步认识多原子分子的立体结构。化学式 中心原子含有孤对电子对数 中心原子结合的原子数 空间构型H2S 2 2 V形NH2- 2 2 V形BF3 0 3 正三角形CHCl3 0 4 四面体SiF4 0 4 正四面体[练习]:1、下列物质中,分子的立体结构与水分子相似的是A、CO2 B、H2S C、PCl3 D、SiCl42、下列分子的立体结构,其中属于直线型分子的是A、H2O B、CO2 C、C2H2 D、P43、写出你所知道的分子具有以下形状的物质的化学式,并指出它们分子中的键角分别是多少?①直线形②平面三角形③三角锥形④正四面体4、下列分子中,各原子均处于同一平面上的是A、NH3 B、CCl4 C、H2O D、CH2O5、下列分子的结构中,原子的最外层电子不都满足8电子稳定结构的是A、CO2 B、PCl3 C、CCl4 D、NO26、下列分子或离子的中心原子,带有一对孤对电子的是A、XeO4 B、BeCl2 C、CH4 D、PCl37、为了解释和预测分子的空间构型,科学家在归纳了许多已知的分子空间构型的基础上,提出了一种十分简单的理论模型——价层电子对互斥模型。这种模型把分子分成两类:一类是 ;另一类是 。BF3和NF3都是四个原子的分子,BF3的中心原子是 ,NF3的中心原子是 ;BF3分子的立体构型是平面三角形,而NF3分子的立体构型是三角锥形的原因是。8、用价层电子对互斥模型推测下列分子或离子的空间构型。BeCl2 ;SCl2 ;SO32- ;SF6第二课时教学目标1、认识杂化轨道理论的要点2、进一步了解有机化合物中碳的成键特征3、能根据杂化轨道理论判断简单分子或离子的构型4、采用图表、比较、讨论、归纳、综合的方法进行教学5、培养学生分析、归纳、综合的能力和空间想象能力教学重点:杂化轨道理论的要点教学难点:分子的立体结构,杂化轨道理论教学过程:碳的价电子构型是什么样的?甲烷的分子模型表明是空间正四面体,分子中的C—H键是等同的,键角是109°28′。说明什么?[结论]碳原子具有四个完全相同的轨道与四个氢原子的电子云重叠成键。师:碳原子的价电子构型2s22p2,是由一个2s轨道和三个2p轨道组成的,为什么有这四个相同的轨道呢?为了解释这个构型Pauling提出了杂化轨道理论。板书:三、杂化轨道理论1、杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。[思考与交流]甲烷分子的轨道是如何形成的呢?形成甲烷分子时,中心原子的2s和2px,2py,2pz等四条原子轨道发生杂化,形成一组新的轨道,即四条sp3杂化轨道,这些sp3杂化轨道不同于s轨道,也不同于p轨道。根据参与杂化的s轨道与p轨道的数目,除了有sp3杂化轨道外,还有sp2 杂化和sp杂化,sp2 杂化轨道表示由一个s轨道与两个p轨道杂化形成的,sp杂化轨道表示由一个s轨道与一个p轨道杂化形成的。[讨论交流]:应用轨道杂化理论,探究分子的立体结构。化学式 杂化轨道数 杂化轨道类型 分子结构CH4C2H4BF3CH2OC2H2[总结评价]:引导学生分析、归纳、总结多原子分子立体结构的判断规律,完成下表。化学式 中心原子孤对电子对数 杂化轨道数 杂化轨道类型 分子结构CH4C2H4BF3CH2OC2H2[讨论]:怎样判断有几个轨道参与了杂化?(提示:原子个数)[结论]:中心原子的孤对电子对数与相连的其他原子数之和,就是杂化轨道数。[讨论总结]:三种杂化轨道的轨道形状,SP杂化夹角为180°的直线型杂化轨道,SP2 杂化轨道为120°的平面三角形,SP3杂化轨道为109°28′的正四面体构型。[科学探究]:课本42页[小结]:HCN中C原子以sp杂化,CH2O中C原子以sp2杂化;HCN中含有2个σ键和2π键;CH2O中含有3σ键和1个π键练习:1、下列分子中心原子是sp2杂化的是A 、 PBr3 B、 CH4 C、 BF3 D、 H2O2、关于原子轨道的说法正确的是A 、凡是中心原子采取sp3杂化轨道成键的分子其几何构型都是正四面体B 、CH4分子中的sp3杂化轨道是由4个H原子的1s 轨道和C原子的2p轨道混合起来而形成的C 、sp3杂化轨道是由同一个原子中能量相近的s 轨道和p轨道混合起来形成的一组能量相近的新轨道D 、凡AB3型的共价化合物,其中中心原子A均采用sp3杂化轨道成键3、用Pauling的杂化轨道理论解释甲烷分子的四面体结构,下列说法不正确的是A、C原子的四个杂化轨道的能量一样B、C原子的sp3杂化轨道之间夹角一样C、C原子的4个价电子分别占据4个sp3杂化轨道D、C原子有1个sp3杂化轨道由孤对电子占据4、下列对sp3 、sp2 、sp杂化轨道的夹角的比较,得出结论正确的是A、 sp杂化轨道的夹角最大B、 sp2杂化轨道的夹角最大C、 sp3杂化轨道的夹角最大D、 sp3 、sp2 、sp杂化轨道的夹角相等5、乙烯分子中含有4个C—H和1个C=C双键,6个原子在同一平面上。下列关于乙烯分子的成键情况分析正确的是A 、每个C原子的2s轨道与2p轨道杂化,形成两个sp杂化轨道B 、每个C原子的1个2s轨道与2个2p轨道杂化,形成3个sp2杂化轨道C 、每个C原子的2s轨道与3个2p轨道杂化,形成4个sp3杂化轨道D 、每个C原子的3个价电子占据3个杂化轨道,1个价电子占据1个2p轨道6、ClO-、ClO2-、ClO3-、ClO 4-中Cl都是以sp3杂化轨道与O原子成键的,试推测下列微粒的立体结构微粒 ClO- ClO2- ClO3- ClO4-立体结构7、根据杂化轨道理论,请预测下列分子或离子的几何构型:CO2 , CO32-H2S , PH38、为什么H2O分子的键角既不是90°也不是109°28′而是104.5°?第三课时教学目标1、配位键、配位化合物的概念2、配位键、配位化合物的表示方法3、采用图表、比较、讨论、归纳、综合的方法进行教学4、培养学生分析、归纳、综合的能力教学重点配位键、配位化合物的概念教学难点配位键、配位化合物的概念教学过程[创设问题情景]什么是配位键?配位键如何表示?配位化合物的概念?学生阅读教材,然后讨论交流。1、配位键⑴概念共用电子对由一个原子单方向提供给另一原子共用所形成的共价键。⑵表示A B电子对给予体 电子对接受体⑶条件:其中一个原子必须提供孤对电子。另一原子必须能接受孤对电子轨道。[提问]举出含有配位键的离子或分子举例:H3O+NH4+[过渡]什么是配位化合物呢?[讲解]金属离子或原子与某些分子或离子以配位键结合而形成的化合物称为配合物。[过渡] 配位化合物如何命名?[讲解] 硫酸四氨合铜[学生练习命名][Cu(NH3)4]Cl2K3[Fe(SCN)6]Na3[AlF6][小结]本节主要讲述了配位键和配位化合物。[练习]1、铵根离子中存在的化学键类型按离子键、共价键和配位键分类,应含有A、离子键和共价键 B、离子键和配位键C、配位键和共价键 D、离子键2、下列属于配合物的是A、NH4Cl B、Na2CO3.10H2OC、CuSO4. 5H2O D、Co(NH3)6Cl33、下列分子或离子中,能提供孤对电子与某些金属离子形成配位键的是①H2O ②NH3 ③F— ④CN— ⑤COA、①② B、① ②③ C、①②④ D、①②③④⑤4、配合物在许多方面有着广泛的应用。下列叙述不正确的是A、以Mg2+为中心的大环配合物叶绿素能催化光合作用。B、Fe2+的卟啉配合物是输送O2的血红素。C、[Ag(NH3)2]+是化学镀银的有效成分。D、向溶液中逐滴加入氨水,可除去硫酸锌溶液中的Cu2+。5.下列微粒:①H3O+②NH4+③CH3COO-④ NH3⑤CH4中含有配位键的是A、①② B、①③ C、④⑤ D、②④6.亚硝酸根NO2-作为配体,有两种方式。其一是氮原子提供孤对电子与中心原子配位;另一是氧原子提供孤对电子与中心原子配位 。前者称为硝基,后者称为亚硝酸根。[Co(NH3)5NO2]Cl2 就有两种存在形式,试画出这两种形式的配离子的结第三节 分子的性质第一课时教学目标1、了解极性共价键和非极性共价键;2、结合常见物质分子立体结构,判断极性分子和非极性分子;3、培养学生分析问题、解决问题的能力和严谨认真的科学态度。重点、难点多原子分子中,极性分子和非极性分子的判断。教学过程创设问题情境:①如何理解共价键、极性键和非极性键的概念;②如何理解电负性概念;③写出H2、Cl2、N2、HCl、CO2、H2O的电子式。提出问题:由相同或不同原子形成的共价键、共用电子对在两原子出现的机会是否相同?讨论与归纳:通过学生的观察、思考、讨论。一般说来,同种原子形成的共价键中的电子对不发生偏移,是非极性键。而由不同原子形成的共价键,电子对会发生偏移,是极性键。提出问题:(1) 共价键有极性和非极性;分子是否也有极性和非极性?(2) 由非极性键形成的分子中,正电荷的中心和负电荷的中心怎样分布?是否重合?(3) 由极性键形成的分子中,怎样找正电荷的中心和负电荷的中心?讨论交流:利用教科书提供的例子,以小组合作学习的形式借助图示以及数学或物理中学习过的向量合成方法,讨论、研究判断分子极性的方法。总结归纳:(1) 由极性键形成的双原子、多原子分子,其正电中心和负电中心重合,所以都是非极性分子。如:H2、N2、C60、P4。(2) 含极性键的分子有没有极性,必须依据分子中极性键的极性向量和是否等于零而定。当分子中各个键的极性的向量和等于零时,是非极性分子。如:CO2、BF3、CCl4。当分子中各个键的极性向量和不等于零时,是极性分子。如:HCl、NH3、H2O。(3) 引导学生完成下列表格分子 共价键的极性 分子中正负电荷中心 结论 举例同核双原子分子 非极性键 重合 非极性分子 H2、N2、O2异核双原子分子 极性键 不重合 极性分子 CO、HF、HCl异核多原子分子 分子中各键的向量和为零 重合 非极性分子 CO2、BF3、CH4分子中各键的向量和不为零 不重合 极性分子 H2O、NH3、CH3Cl一般规律:a. 以极性键结合成的双原子分子是极性分子。如:HCl、HF、HBrb. 以非极性键结合成的双原子分子或多原子分子是非极性分子。如:O2、H2、P4、C60。c. 以极性键结合的多原子分子,有的是极性分子也有的是非极性分子。d. 在多原子分子中,中心原子上价电子都用于形成共价键,而周围的原子是相同的原子,一般是非极性分子。练习:1、下列说法中不正确的是A、共价化合物中不可能含有离子键B、有共价键的化合物,不一定是共价化合物C、离子化合物中可能存在共价键D、原子以极性键结合的分子,肯定是极性分子2、以极性键结合的多原子分子,分子是否有极性取决于分子的空间构型。下列分子属极性分子的是A、 H2O B、 CO2 C、 BCl3 D、 NH33、下列各分子中所有原子都满足最外层8电子稳定结构且共用电子对发生偏移的是A、 BeCl2 B、 PCl3 C、 PCl5 D、 N24、分子有极性分子和非极性分子之分。下列对极性分子和非极性分子的认识正确的是A、只含非极性键的分子一定是非极性分子B、含有极性键的分子一定是极性分子C、非极性分子一定含有非极性键D、极性分子一定含有极性键5、请指出表中分子的空间构型,判断其中哪些属于极性分子,哪些属于非极性分子,并与同学讨论你的判断方法。分子 空间构型 分子有无极性 分子 空间构型 分子有无极性O2 HFCO2 H2OBF3 NH3CCl46、根据下列要求,各用电子式表示一实例:(1)、只含有极性键并有一对孤对电子的分子;(2)、只含有离子键、极性共价键的物质;(3)、只含有极性共价键、常温下为液态的非极性分子。7、二氯乙烯的同分异构体有非极性分子和极性分子两种,其中属于极性分子的结构简式是 ;属于非极性分子的结构简式是 。8、已知化合物B4F4中每个硼原子结合一个氟原子,且任意两个硼原子间的距离相等,试画出B4F4的空间构型,并分析该分子的极性。第二课时教学目标1、范德华力、氢键及其对物质性质的影响2、能举例说明化学键和分子间作用力的区别3、例举含有氢键的物质4、采用图表、比较、讨论、归纳、综合的方法进行教学5、培养学生分析、归纳、综合的能力教学重点分子间作用力、氢键及其对物质性质的影响教学难点分子间作用力、氢键及其对物质性质的影响教学过程[创设问题情景]气体在加压或降温时为什么会变成液体或固体?学生联系实际生活中的水的结冰、气体的液化,讨论、交流。[结论]表明分子间存在着分子间作用力,且这种分子间作用力称为范德华力。[思考与讨论]仔细观察教科书中表2-4,结合分子结构的特点和数据,能得出什么结论?[小结]分子的极性越大,范德华力越大。[思考与交流]完成“学与问”,得出什么结论?[结论]结构相似时,相对分子质量越大,范德华力越大。[过渡]你是否知道,常见的物质中,水是熔、沸点较高的液体之一?冰的密度比液态的水小?为了解释水的这些奇特性质,人们提出了氢键的概念。[阅读、思考与归纳]学生阅读“三、氢键及其对物质性质的影响”,思考,归纳氢键的概念、本质及其对物质性质的影响。[小结]氢键是除范德华力之外的另一种分子间作用力。氢键是由已经与电负性很强的原子(如水分子中的氢)与另一个分子中电负性很强的原子(如水分子中的氧)之间的作用力。氢键的存在大大加强了水分子之间的作用力,使水的熔、沸点教高。[讲解]氢键不仅存在于分子之间,还存在于分子之内。一个分子的X-H键与另一个分子的Y相结合而成的氢键,称为分子间氢键,如图2-34一个分子的X-H键与它的内部的Y相结合而成的氢键称为分子内氢键,如图2-33[阅读资料卡片]总结、归纳含有氢键的物质,了解各氢键的键能、键长。[小结]本节主要是分子间作用力及其对物质性质的影响,氢键及其对物质性质的影响。练习1.下列各组物质的晶体中,化学键类型相同,熔化时所克服的作用力也完全相同的是A.CO2和SiO2B.NaCl和HClC.(NH4)2CO3和CO(NH2)2D.NaH和KCl2.你认为下列说法不正确的是A.氢键存在于分子之间,不存在于分子之内B.对于组成和结构相似的分子,其范德华力随着相对分子质量的增大而增大C.NH3极易溶于水而CH4难溶于水的原因只是NH3是极性分子,CH4是非极性分子D.冰熔化时只破坏分子间作用力3.沸腾时只需克服范德华力的液体物质是A.水 B.酒精 C.溴 D.水银4.下列物质中分子间能形成氢键的是A.N2 B.HBr C.NH3 D.H2S5.以下说法哪些是不正确的?(1) 氢键是化学键 (2) 甲烷可与水形成氢键(3) 乙醇分子跟水分子之间存在范德华力⑷ 碘化氢的沸点比氯化氢的沸点高是由于碘化氢分子之间存在氢键6.乙醇(C2H5OH)和二甲醚(CH3OCH3)的化学组成均为C2H6O,但乙醇的沸点为78.5℃,而二甲醚的沸点为-23℃,为何原因?7.你认为水的哪些物理性质与氢键有关?试把你的结论与同学讨论交流。第三课时教学目标1、从分子结构的角度,认识“相似相溶”规律。2、了解“手性分子”在生命科学等方面的应用。3、能用分子结构的知识解释无机含氧酸分子的酸性。4、培养学生分析、归纳、综合的能力5、采用比较、讨论、归纳、总结的方法进行教学教学重点、难点手性分子和无机含氧酸分子的酸性教学过程[复习过渡]复习极性键非极性键,极性分子和非极性分子并举出常见的极性分子和非极性分子。通过前面的学习我们知道碘易溶于四氯化碳而不易溶于水,氨和氯化氢易溶于水,这是为什么呢?[指导阅读]课本P52,让学生说出从分子结构的角度,物质相互溶解有那些规律?[学生得出结论]1、“相似相溶”规律:非极性物质一般易溶于非极性溶剂,极性溶质一般易溶于极性溶剂。2、若存在氢键,溶质和溶剂之间的氢键作用力越大,溶解性越好。3、若溶质遇水能反应将增加其在水中的溶解度[巩固练习]完成思考与交流[指导阅读]课本P53~54,了解什么叫手性异构体,什么叫手性分子,以及“手性分子在生命科学等方面的应用。[设问]如何判断一个分子是手性分子呢?[学生思考并回答]有碳原子上连有四个不同的原子或基团。[教师补充]我们把连有四个不同的原子或基团的碳原子叫手性碳原子[过渡]通过前面的学习,我们都知道硫酸的酸性强于亚硫酸,硝酸的酸性强于亚硝酸,这是为什么呢?[讲述]从表面上来看,对于同一种元素的含氧酸来说,该元素的化合价越高,其含氧酸的酸性越强,这与他们的结构有关含氧酸的通式(HO)mROn,如果成酸元素R相同,则n越大,R的正电性越高,导致R-O-H中的O原子向R偏移,因而在水分子的作用下,也就容易电离出氢离子,即酸性越强。如硫酸中n为2,亚硫酸中n为1,所以硫酸的酸性强于亚硫酸。[巩固练习]1、把下列液体分别装在酸式滴定管中,并使其以细流流下,当用带有静点的玻璃棒接近液体细流时,细流可能发生偏转的是A 、四氯化碳 B 、乙醇 C 、 二硫化碳 D、 苯2、根据“相似相溶”规律,你认为下列物质在水中溶解度较大的是A 、乙烯 B 、二氧化碳 C、二氧化硫 D、氢气3、下列氯元素含氧酸酸性最强的是 A、HClO B、HClO2 C、HClO3 D、HClO44、下列物质中溶解度最小的是A、LiF B、NaF C、KF D、CsF5、- 3 -南通市丰利中学化学组高一备课组教案 选修3《物质结构与性质》第一章 物质结构与性质教案教材分析:一、本章教学目标1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。3.了解原子核外电子的运动状态,知道电子云和原子轨道。4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。本章知识分析:本章是在学生已有原子结构知识的基础上,进一步深入地研究原子的结构,从构造原理和能量最低原理介绍了原子的核外电子排布以及原子光谱等,并图文并茂地描述了电子云和原子轨道;在原子结构知识的基础上,介绍了元素周期系、元素周期表及元素周期律。总之,本章按照课程标准要求比较系统而深入地介绍了原子结构与元素的性质,为后续章节内容的学习奠定基础。尽管本章内容比较抽象,是学习难点,但作为本书的第一章,教科书从内容和形式上都比较注意激发和保持学生的学习兴趣,重视培养学生的科学素养,有利于增强学生学习化学的兴趣。通过本章的学习,学生能够比较系统地掌握原子结构的知识,在原子水平上认识物质构成的规律,并能运用原子结构知识解释一些化学现象。注意本章不能挖得很深,属于略微展开。第1节 原子结构第一课时知识与技能:1、进一步认识原子核外电子的分层排布2、知道原子核外电子的能层分布及其能量关系3、知道原子核外电子的能级分布及其能量关系4、能用符号表示原子核外的不同能级,初步知道量子数的涵义5、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布6、能用电子排布式表示常见元素(1~36号)原子核外电子的排布方法和过程:复习和沿伸、类比和归纳、能层类比楼层,能级类比楼梯。情感和价值观:充分认识原子结构理论发展的过程是一个逐步深入完美的过程。教学过程:1、原子结构理论发展从古代希腊哲学家留基伯和德谟克利特的朴素原子说到现代量子力学模型,人类思想中的原子结构模型经过多次演变,给我们多方面的启迪。现代大爆炸宇宙学理论认为,我们所在的宇宙诞生于一次大爆炸。大爆炸后约两小时,诞生了大量的氢、少量的氦以及极少量的锂。其后,经过或长或短的发展过程,氢、氦等发生原子核的熔合反应,分期分批地合成其他元素。〖复习〗必修中学习的原子核外电子排布规律:核外电子排布的尸般规律(1)核外电子总是尽量先排布在能量较低的电子层,然后由里向外,依次排布在能量逐步升高的电子层(能量最低原理)。(2)原子核外各电子层最多容纳29’个电子。(3)原于最外层电子数目不能超过8个(K层为最外层时不能超过2个电子)。(4)次外层电子数目不能超过18个(K层为次外层时不能超过2个),倒数第三层电子数目不能超过32个。说明:以上规律是互相联系的,不能孤立地理解。例如;当M层是最外层时,最多可排8个电子;当M层不是最外层时,最多可排18个电子〖思考〗这些规律是如何归纳出来的呢?2、能层与能级由必修的知识,我们已经知道多电子原子的核外电子的能量是不同的,由内而外可以分为:第一、二、三、四、五、六、七……能层符号表示 K、 L、 M、 N、 O、 P、 Q……能量由低到高例如:钠原子有11个电子,分布在三个不同的能层上,第一层2个电子,第二层8个电子,第三层1个电子。由于原子中的电子是处在原子核的引力场中,电子总是尽可能先从内层排起,当一层充满后再填充下一层。理论研究证明,原子核外每一层所能容纳的最多电子数如下:能 层 一 二 三 四 五 六 七……符 号 K L M N O P Q……最多电子数 2 8 18 32 50……即每层所容纳的最多电子数是:2n2(n:能层的序数)但是同一个能层的电子,能量也可能不同,还可以把它们分成能级(S、P、d、F),就好比能层是楼层,能级是楼梯的阶级。各能层上的能级是不一样的。能级的符号和所能容纳的最多电子数如下:能 层 K L M N O ……能 级 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f ……最多电子数 2 2 6 2 6 10 2 6 10 14 ……各能层电子数 2 8 18 32 50 ……(1) 每个能层中,能级符号的顺序是ns、np、nd、nf……(2) 任一能层,能级数=能层序数(3) s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍3、构造原理根据构造原理,只要我们知道原子序数,就可以写出几乎所有元素原子的电子排布。即电子所排的能级顺序:1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s……元素原子的电子排布:(1—36号)氢 H 1s1……钠 Na 1s22s22p63s1……钾 K 1s22s22p63s23p64s1 【Ar】4s1……有少数元素的基态原子的电子排布对于构造原理有一个电子的偏差,如:铬 24Cr [Ar]3d54s1铜 29Cu [Ar]3d104s1[练习]1、写出17Cl(氯)、21Sc(钪)、35Br(溴)的电子排布氯:1s22s22p63s23p5钪:1s22s22p63s23p63d14s2溴:1s22s22p63s23p63d104s24p5根据构造原理只要我们知道原子序数,就可以写出元素原子的电子排布,这样的电子排布是基态原子的。2、写出1—36号元素的核外电子排布式。3、写出1—36号元素的简化核外电子排布式。总结并记住书写方法。4、画出下列原子的结构示意图:Be、N、Na、Ne、Mg回答下列问题:在这些元素的原子中,最外层电子数大于次外层电子数的有 ,最外层电子数与次外层电子数相等的有 ,最外层电子数与电子层数相等的有 ;L层电子数达到最多的有 ,K层与M层电子数相等的有 。5、下列符号代表一些能层或能级的能量,请将它们按能量由低到高的顺序排列:(1)EK EN EL EM ,(2)E3S E2S E4S E1S ,(3)E3S E3d E2P E4f 。6、A元素原子的M电子层比次外层少2个电子。B元素原子核外L层电子数比最外层多7个电子。 (1)A元素的元素符号是 ,B元素的原子结构示意图为________________;(2)A、B两元素形成化合物的化学式及名称分别是__ _____ _。第二课时知识与技能:1、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布2、能用电子排布式表示常见元素(1~36号)原子核外电子的排布3、知道原子核外电子的排布遵循能量最低原理4、知道原子的基态和激发态的涵义5、初步知道原子核外电子的跃迁及吸收或发射光谱,了解其简单应用教学过程:〖课前练习〗1、理论研究证明,在多电子原子中,电子的排布分成不同的能层,同一能层的电子,还可以分成不同的能级。能层和能级的符号及所能容纳的最多电子数如下:(1)根据 的不同,原子核外电子可以分成不同的能层,每个能层上所能排布的最多电子数为 ,除K层外,其他能层作最外层时,最多只能有 电子。(2)从上表中可以发现许多的规律,如s能级上只能容纳2个电子,每个能层上的能级数与 相等。请再写出一个规律 。2、A、B、C、D均为主族元素,已知A原子L层上的电子数是K层的三倍;B元素的原子核外K、L层上电子数之和等于M、N层电子数之和;C元素形成的C2+离子与氖原子的核外电子排布完全相同,D原子核外比C原子核外多5个电子。则(1)A元素在周期表中的位置是 ,B元素的原子序数为 ;(2)写出C和D的单质发生反应的化学方程式 。〖引入〗电子在核外空间运动,能否用宏观的牛顿运动定律来描述呢?4、电子云和原子轨道:(1)电子运动的特点:①质量极小 ②运动空间极小 ③极高速运动。因此,电子运动来能用牛顿运动定律来描述,只能用统计的观点来描述。我们不可能像描述宏观运动物体那样,确定一定状态的核外电子在某个时刻处于原子核外空间如何,而只能确定它在原子核外各处出现的概率。概率分布图看起来像一片云雾,因而被形象地称作电子云。常把电子出现的概率约为90%的空间圈出来,人们把这种电子云轮廓图成为原子轨道。S的原子轨道是球形的,能层序数越大,原子轨道的半径越大。P的原子轨道是纺锤形的,每个P能级有3个轨道,它们互相垂直,分别以Px、Py、Pz为符号。P原子轨道的平均半径也随能层序数增大而增大。s电子的原子轨道都是球形的(原子核位于球心),能层序数,2越大,原子轨道的半径越大。这是由于1s,2s,3s……电子的能量依次增高,电子在离核更远的区域出现的概率逐渐增大,电子云越来越向更大的空间扩展。这是不难理解的,打个比喻,神州五号必须依靠推动(提供能量)才能克服地球引力上天,2s电子比1s电子能量高,克服原子核的吸引在离核更远的空间出现的概率就比1s大,因而2s电子云必然比1s电子云更扩散。(2) [重点难点]泡利原理和洪特规则量子力学告诉我们:ns能级各有一个轨道,np能级各有3个轨道,nd能级各有5个轨道,nf能级各有7个轨道.而每个轨道里最多能容纳2个电子,通常称为电子对,用方向相反的箭头“↑↓”来表示。一个原子轨道里最多只能容纳2个电子,而且自旋方向相反,这个原理成为泡利原理。推理各电子层的轨道数和容纳的电子数。当电子排布在同一能级的不同轨道时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则是洪特规则。〖练习〗写出5、6、7、8、9号元素核外电子排布轨道式。并记住各主族元素最外层电子排布轨道式的特点:(成对电子对的数目、未成对电子数和它占据的轨道。〖思考〗下列表示的是第二周期中一些原子的核外电子排布,请说出每种符号的意义及从中获得的一些信息。〖思考〗写出24号、29号元素的电子排布式,价电子排布轨道式,阅读周期表,比较有什么不同,为什么?从元素周期表中查出铜、银、金的外围电子层排布。它们是否符合构造原理 2.电子排布式可以简化,如可以把钠的电子排布式写成[Ne]3S1。试问:上式方括号里的符号的意义是什么?你能仿照钠原子的简化电子排布式写出第8号元素氧、第14号元素硅和第26号元素铁的简化电子排布式吗 洪特规则的特例:对于同一个能级,当电子排布为全充满、半充满或全空时,是比较稳定的。练习:1、用轨道表示式表示下列原子的价电子排布。(1)N (2)Cl (3)O (4)Mg2、以下列出的是一些原子的2p能级和3d能级中电子排布的情况。试判断,哪些违反了泡利不相容原理,哪些违反了洪特规则。(1) (2) (3)(4) (5) (6)违反泡利不相容原理的有 ,违反洪特规则的有 。3、下列原子的外围电子排布中,那一种状态的能量较低?试说明理由。(1)氮原子:A. B.2s 2p 2s 2p;(2)钠原子:A.3s1 B.3p1;(3)铬原子:A.3d54s1 B.3d44s2。4、核外电子排布式和轨道表示式是表示原子核外电子排布的两种不同方式。请你比较这两种表示方式的共同点和不同点。5、原子核外电子的运动有何特点 科学家是怎样来描述电子运动状态的 以氮原子为例,说明原子核外电子排布所遵循的原理。[同步训练]1、以下能级符号正确的是()A.6s B.2d C.3f D.7p2、下列个能层中不包含p能级的是()A.N B.M C.L D.K3、下列符号代表一些能层或能级的能量,请将它们按能量由低到高的顺序排列:(1)EK EN EL EM(2)E3s E2s E4s E1s(3)E3s E2d E2p E4f4、下列关于1S电子在原子核外出现的概率分布图的说法中,正确的是()A、通常用小黑点来表示电子的多少B、小黑点密表示在该核外空间的电子数多C、小黑点密表示在该核外空间的单位体积内电子出现的概率大D、通常用小黑点来表示电子绕核作高速圆周运动第三课时知识与技能:1、知道原子核外电子的排布遵循能量最低原理2、知道原子的基态和激发态的涵义3、初步知道原子核外电子的跃迁及吸收或发射光谱,了解其简单应用重点难点:能量最低原理、基态、激发态、光谱教学过程:〖引入〗在日常生活中,我们看到许多可见光如灯光、霓虹灯光、激光、焰火与原子结构有什么关系呢?创设问题情景:利用录像播放或计算机演示日常生活中的一些光现象,如霓虹灯光、激光、节日燃放的五彩缤纷的焰火等。提出问题:这些光现象是怎样产生的 问题探究:指导学生阅读教科书,引导学生从原子中电子能量变化的角度去认识光产生的原因。问题解决:联系原子的电子排布所遵循的构造原理,理解原子基态、激发态与电子跃迁等概念,并利用这些概念解释光谱产生的原因。应用反馈:举例说明光谱分析的应用,如科学家们通过太阳光谱的分析发现了稀有气体氦,化学研究中利用光谱分析检测一些物质的存在与含量,还可以让学生在课后查阅光谱分析方法及应用的有关资料以扩展他们的知识面。〖总结〗原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。处于最低能量的原子叫做基态原子。当基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。电子从较高能量的激发态跃迁到较低能量的激发态乃至基态时,将释放能量。光(辐射)是电子释放能量的重要形式之一。不同元素的原子发生跃迁时会吸收或释放不同的光,可以用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,总称原子光谱。许多元素是通过原子光谱发现的。在现代化学中,常利用原子光谱上的特征谱线来鉴定元素,称为光谱分析。〖阅读分析〗分析教材p8发射光谱图和吸收光谱图,认识两种光谱的特点。阅读p8科学史话,认识光谱的发展。〖课堂练习〗1、同一原子的基态和激发态相比较A、基态时的能量比激发态时高 B、基态时比较稳定C、基态时的能量比激发态时低 D、激发态时比较稳定2、生活中的下列现象与原子核外电子发生跃迁有关的是A、钢铁长期使用后生锈 B、节日里燃放的焰火C、金属导线可以导电 D、卫生丸久置后消失3、比较多电子原子中电子能量大小的依据是A.元素原子的核电荷数 B.原子核外电子的多少C.电子离原子核的远近 D.原子核外电子的大小4、当氢原子中的电子从2p能级,向其他低能量能级跃迁时A. 产生的光谱为吸收光谱B. 产生的光谱为发射光谱C. 产生的光谱线的条数可能是2 条D. 电子的势能将升高.第二节 原子结构与元素的性质(第一课时)一、三维目标(一)知识与技能:1、进一步认识周期表中原子结构和位置、价态、元素数目等之间的关系2、知道外围电子排布和价电子层的涵义3、认识周期表中各区、周期、族元素的原子核外电子排布的规律4、知道周期表中各区、周期、族元素的原子结构和位置间的关系5、掌握原子半径的变化规律6、能说出元素电离能的涵义,能应用元素的电离能说明元素的某些性质7、进一步形成有关物质结构的基本观念,初步认识物质的结构与性质之间的关系8、认识主族元素电离能的变化与核外电子排布的关系9、认识原子结构与元素周期系的关系,了解元素周期系的应用价值10、能说出元素电负性的涵义,能应用元素的电负性说明元素的某些性质11、能根据元素的电负性资料,解释元素的“对角线”规则,列举实例予以说明12、能从物质结构决定性质的视角解释一些化学现象,预测物质的有关性质13、进一步认识物质结构与性质之间的关系,提高分析问题和解决问题的能力(二)过程与方法:1、弄清元素的电负性与元素的金属性、非金属性的关系2、理解元素的电负性与元素的化合价的关系3、理解元素的电负性与离子化合物、共价化合物的关系4、学会用元素的电负性解释对角线规则5、理解元素性质的周期性变化与核外电子排布周期性变化的关系6、复习法、延伸归纳法、讨论法、引导分析法(三)情感和价值观:1、了解元素周期表的意义,培养激发学生对化学的兴趣二、教学重点:1、原子核外电子排布的周期性变化2、原子结构与元素周期表的关系3、元素周期表的5个区与族的关系4、元素的原子半径、元素的第一电离能、元素的电负性的周期性变化5、元素的电负性与元素的金属性和非金属性的关系6、元素的电离能与元素得失电子能力的关系三、教学难点:1、元素周期表的结构与原子结构的关系2、用元素的电负性解释对角线规则3、元素的电负性与元素的金属性、非金属性的关系四、教学过程【复习引入】什么是元素周期律?元素的性质包括哪些方面?元素性质周期性变化的根本原因是什么?【生】:元素的性质随核电荷数递增发生周期性的递变。元素的性质包括:金属性、非金属性、原子半径……元素性质周期性变化的根本原因是:原子电子排布的周期性变化【师】不错,说到底元素的性质是由原子结构所决定的,今天,我们将进一步探究原子结构与元素性质的关系。【板书】第二节 原子结构与元素的性质元素的性质跟其在周期表中的位置有相应的关系,所以要探究原子结构与元素的性质的关系首先得研究元素周期表。在必修2中我们已经对元素周期表做过探究,请同学们结合P15-16页『科学探究』内容回忆元素周期表的结构的相关知识。【板书】一、原子结构与元素周期表【科学探究】P15-16【学生思考、讨论、回答】【小结】1、元素周期表共有7个周期,其中有三个短周期,三个长周期和一个不完全周期。每周期具有元素的数目分别为2、8、8、18、18、32、26种。一、1s1——1s2 二、2s1——2s22p6 三、3s1——3s23p6 四、4s1 ——4s24p6五、5s1 ——5s25p6 六、6s1——6s26p6 七、7s1——?通式:ns1——ns2np6第一周期结尾元素只有一个1s能级,2个电子,所以电子排布跟其他周期不同2、元素周期表共有18个纵列,【板书】1、价电子层:能级上的电子数可在化学反应中发生变化的能层。2、价电子:价电子层上的电子。3、每个纵列的价电子层的电子总数相等3、s区有2个纵列,d区有8个纵列,P区有6个纵列;从元素的价电子层结构可以看出,s区、d区、ds区的元素在发生化学反应时容易失去最外层电子及倒数第二层的d电子,呈现金属性,所以s区、d区、ds区都是金属。【归纳】S区元素价电子特征排布为nS1~2,价电子数等于族序数。d区元素价电子排布特征为(n-1)d1~10ns1~2;价电子总数等于副族序数;ds区元素特征电子排布为(n-1)d10ns1~2,价电子总数等于所在的列序数;p区元素特征电子排布为ns2np1~6;价电子总数等于主族序数。4、元素周期表可分为主族、副族和0族:从图1—16可知,副族元素(包括d区和ds 区的元素)介于s区元素(主要是金属元素)和p区(主要是非金属元素)之间,处于由金属元素向非金属元素过渡的区域,因此把副族元素又称为过渡元素。5、这是由元素的价电子层结构和元素周期表中性质递变规律决定的,在元素周期表中,同周期元素从左到右非金属性逐渐增强,金属性逐渐减弱,同主族元素从上到下非金属性逐渐减弱,金属性逐渐增强,结果使元素周期表右上角三角区域的元素主要呈现出非金属性。6、由于元素的金属性和非金属性之间并没有严格的界线,处于非金属三角区边缘的元素既能表现出一定的非金属性,又能表现出一定的金属性,因此,这些元素常被称为半金属或准金属。【思考】元素在周期表中排布在哪个横行,由什么决定?元素在周期表中排在哪个列由什么决定?(分析周期表着重看元素原子的外围电子排布及价电子总数与族序数的联系。)【总结板书】4、元素在周期表中的位置由原子结构决定:1、 原子核外电子层数决定元素所在的周期;周期数=最大能层数(钯除外)46Pd [Kr]4d10,最大能层数是4,但是在第五周期。2、 原子的价电子总数决定元素所在的族;如:29Cu 3d104s1 ,10+1=11尾数是1所以,是IB。总结:元素周期表是元素原子结构以及递变规律的具体体现。【过渡】由于随核电荷数的递增,电子在能级里的填充顺序遵循构造原理,元素周期系的周期不是单调的,每一周期里元素的数目并不总是一样多,而是随周期序号的递增渐渐增多,同时,金属元素的数目也逐渐增多,(关系见P14)因此我们可以把元素周期表画成螺旋型的形状。见P15 图 1——15。【练习巩固】P24——1、21、元素的分区和族1) s 区: , 最后的电子填在 上, 包括 , 属于活泼金属, 为碱金属和碱土金属;2) p区:, 最后的电子填在 上, 包括 族元素, 为非金属和少数金属;3) d区: , 最后的电子填在 上, 包括 族元素, 为过渡金属;4) ds区: , (n-1)d全充满, 最后的电子填在 上, 包括 , 过渡金属(d和ds区金属合起来,为过渡金属);5) f区: , 包括 元素, 称为内过渡元素或内过渡系.2、外围电子构型为4f75d16s2元素在周期表中的位置是 ( )A、第四周期ⅦB族 B、第五周期ⅢB族 C、 第六周期ⅦB族 D、 第六周期ⅢB族3、镭是元素周期表中第七周期的ⅡA族元素。下面关于镭的性质的描述中不正确的是( )A、 在化合物中呈+2价 B、单质使水分解、放出氢气C、 氢氧化物呈两性 D、 碳酸盐难溶于水答案:1、1)ns,IA、IIA 2)np,IIIA-VIIA 以及0 3)(n-1)d,IA、IIA 4)ns,IB-IIB5)镧系和锕系 2、D 3、BD【课后作业】P24 ——3第二节 原子结构与元素的性质(第二课时)【引入】前面我们学习了原子结构与元素的性质的关系,今天我们进一步探究元素周期律。【板书】二、元素周期律【导入新课】 P17 学与问【学生回忆总结】同周期的主族元素从左到右,元素的最高化合价和最低化合价逐渐升高;金属性逐渐减弱,非金属性逐渐增强。【过渡】元素的性质随核电核数递增发生周期性的递变,称为元素周期律。元素周期律的内涵丰富多样,下面,我们来探讨原子半径、电离能和电负性的周期性变化。【板书】1、原子半径(1)定义:是由实验方法测定的两相邻同种原子核之间距离的半数值。包括共价半径,金属半径,范氏(范德华)半径。【讲述】共价半径:单质分子中的2个原子以共价单键结合时,它们核间距离的一半叫该原子的共价半径。金属半径:金属晶格中金属原子的核间距离的一半叫做原子的金属半径。范氏(范德华)半径:在分子型晶体中,不属于同一分子随两个最接近的相同原子在非键合状况下,它们核距离的一半。(稀有气体的原子半径)在一般的资料里,金属元素有金属半径和共价半径的数据,非金属元素则有共价半径和范氏半径的数据,稀有气体只有范氏半径的数据。【探究】观察下列图表分析总结:【学与问】1、元素周期表中同周期主族元素从左到右,原子半径的变化趋势如何?应如何理解这种趋势?2、元素周期表中,同主族元素从上到下,原子半径的变化趋势如何?应如何理解这种趋势?【学生归纳总结】1、同周期主族元素从左到右,原子半径逐渐减小。其主要原因是由于核电荷数的增加使原子核对电子的引力增加而带来原子半径减小的趋势大于增加电子后电子间斥力增大带来原子半径增大的趋势。2、同主族元素从上到下,原子半径逐渐增大。其主要原因是由于电子能层增加,电子间的斥力使原子半径增大。【板书】(2)变化规律:A、同周期主族元素从左到右,原子半径逐渐减小。B、同主族元素从上到下,原子半径逐渐增大。【过渡】元素的另一个性质是电离能【板书】2、电离能(KJ·mol-1)(1)定义:气态电中性基态原子失去1个电子而变成气态+1价阳离子所吸收的最低能量叫第一电离能(I1),通常叫电离能,(电离势)I1【讲述】由气态+1价阳离子再失去1个电子而变成气态+2价阳离子所吸收的能量叫第二电离能(I2),I3I4依次类推,逐级电离能逐步升高。1、第一电离能I1: 态电 性基态原子失去 个电子,转化为气态基态正离子所需要的 叫做第一电离能。第一电离能越大,金属活动性越 弱 。同一元素的第二电离能 大于 第一电离能。【过渡】 原子的第一电离能随核电荷数递增有什么变化规律呢? 请分析图1—21【学生观察、思考、总结】【归纳总结并板书】(2)、递变规律A、同一周期:从左往右,第一电离能呈增大的趋势B、同一族:从上到下,第一电离能呈增大趋势。【提出问题】 碱金属元素的第一电离能有什么变化规律呢?【生答】 从上到下,第一电离能呈增大趋势。【提出问题】为什么Be的第一电离能大于B,N的第一电离能大于O的电离能,Mg的第一电离能大于Al,Zn的第一电离能大于Ga?【解释】Be有价电子排布为2s2,是全充满结构,比较稳定,而B的价电子排布为2s22p1,、比Be不稳定,因此失去第一个电子B比Be容易,第一电离能小。镁的第一电离能比铝的大,磷的第一电离能比硫的大,原理相同。【学与问】1、 碱金属的电离能与金属活泼性有什么关系?【生讨论回答】第一电离能越小,越易失电子,金属的活泼性就越强。因此碱金属元素的第一电离能越小,金属的活泼性就越强。【师】阅读分析表格数据:Na Mg Al各级电离能(KJ/mol) 496 738 5784562 1415 18176912 7733 27459543 10540 1157513353 13630 1483016610 17995 1837620114 21703 232932、为什么原子的逐级电离能越来越大?这些数据与钠、镁、铝的化合价有什么关系?【生讨论回答】【小结】同一种元素的逐级电离能的大小关系:I1Na的I1,比I2小很多,电离能差值很大,说明失去第一个电子比失去第二电子容易得多,所以Na容易失去一个电子形成+1价离子;Mg的I1和I2相差不多,而I2比I3小很多,所以Mg容易失去两个电子形成十2价离子;Al的I1、I2、I3相差不多,而I3比I4小很多,所以A1容易失去三个电子形成+3价离子。【问题】数据的突跃变化说明了什么?【解释】而电离能的突跃变化,说明核外电子是分能层排布的。【练习巩固】1、下列各组微粒按半径逐渐增大,还原性逐渐增强的顺序排列的是(AD)A.Na、K、Rb B.F、Cl、Br C.Mg2+、Al3+、Zn2+ D.Cl-、Br-、I-2、除去气态原子中的一个电子使之成为气态+1价阳离子时所需外界提供的能量叫做该元素的第一电离能。右图是周期表中短周期的一部分,其中第一电离能最小的元素是 (C)3、在下面的电子结构中,第一电离能最小的原子可能是 ( C )A ns2np3 B ns2np5 C ns2np4 D ns2np6【课堂小结】【课后作业】P24有关习题第二节 原子结构与元素的性质(第三课时)【复习引入】1、什么是电离能?它与元素的金属性、非金属性有什么关系?2、同周期元素、同主族元素的电离能变化有什么规律?【过渡】原子半径的大小和电离能的大小都属于元素性质,今天我们继续探讨元素的另一个性质——【板书】3、电负性:【思考与交流】1、什么是电负性?电负性的大小体现了什么性质?阅读教材p20页表【学生阅读、思考】【总结板书】(1)定义:原子在分子中吸引键合电子能力相对大小的量度。【说明】1、元素电负性的值是个相对的量,没有单位。电负性大的元素吸引电子能力强,反之就弱。2、元素电负性的概念最先是由鲍林于1932年在研究化学键性质时提出来的。以氟分电负性为4.0和锂的电负性为1.0作为相对标准,然后根据化学键的键能推算其他元素的相对电负性的数值。后人做了更精确的计算,数值有所修改。【提出问题】同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?1、金属元素越容易失电子,对键合电子的吸引能力越小,电负性越小,其金属性越强;非金属元素越容易得电子,对键合电子的吸引能力越大,电负性越大,其非金属性越强;故可以用电负性来度量金属性与非金属性的强弱。周期表从左到右,元素的电负性逐渐变大;周期表从上到下,元素的电负性逐渐变小。2、同周期元素从左往右,电负性逐渐增大,表明金属性逐渐减弱,非金属性逐渐增强。同主族元素从上往下,电负性逐渐减小,表明元素的金属性逐渐减弱,非金属性逐渐增强。【板书】(2)变化规律:A:同周期元素从左到右,电负性逐渐增大B:同周期元素从上到下,元素的电负性逐渐减小【问题】根据电负性大小,判断氧元素的非金属性与氯元素的非金属性哪个强?【生答】氧元素(氧:3.5 氯 :3.0)【科学探究】1、根据数据制作的第三周期元素的电负性变化图,请用类似的方法制作IA、VIIA元素的电负性变化图。2、电负性的周期性变化示例【引入新概念】4、对角线规则:某些主族元素与右下方的主族元素的有些性质相似,被称为对角线规则【思考】 比较锂和镁在空气中燃烧的产物,铍和铝的氢氧化物的酸碱性以及硼和硅的含氧酸酸性的强弱,说明对角线规则,并用这些元素的电负性解释对角线规则。【解释】:锂的电负性:1.0 镁的电负性:1.2 。锂和镁在过量的氧气中燃烧,不形成过氧化物,只生成正常氧化物;铍的电负性:1.5 铝的电负性 :1.5 ,两者的氢氧化物都是两性氢氧化物;硼的电负性:2.0 硅的电负性: 1.8 ,两者的含氧酸酸性的强度很接近。这些元素在性质上相似,可以粗略认为是它们的电负性相近的缘故。【练习巩固】1、电负性的大小也可以作为判断金属性和非金属性强弱的尺度下列关于电负性的变化规律正确的是 ( A )A.周期表从左到右,元素的电负性逐渐变大B.周期表从上到下,元素的电负性逐渐变大C.电负性越大,金属性越强D.电负性越小,非金属性越强2、已知X、Y元素同周期,且电负性X>Y,下列说法错误的是( C )A、X与Y形成化合物是,X可以显负价,Y显正价B、第一电离能可能Y小于XC、最高价含氧酸的酸性:X对应的酸性弱于于Y对应的D、气态氢化物的稳定性:HmY小于HmX3、根据对角线规则,下列物质的性质具有相似性的是 ( C )A、硼和硅 B、铝和铁 C、铍和铝 D、铜和金【练习巩固】P24 1—9【课后作业】1、x、y为两种元素的原子,x的阴离子与y的阳离子具有相同的电子层结构,由此可知( BC )A.x的原子半径大于y的原子半径 B.x的电负性大于y的电负性C.x的氧化性大于y的氧化性 D.x的第一电离能大于y 的第一电离能2、元素电负性随原子序数的递增而增强的是 ( D )A.Na > K > Rb B.N > P > AsC.O > S > Cl D.Si > P > Cl3、对Na、Mg、Al的有关性质的叙述正确的是 ( D )A.碱性:NaOHB.第一电离能:NaC.电负性:Na>Mg>AlD.还原性:Na>Mg>Al板书设计第二节 原子结构与元素的性质一、原子结构与元素周期表1、价电子层:能级上的电子数可在化学反应中发生变化的能层。2、价电子:价电子层上的电子。3、每个纵列的价电子层的电子总数相等4、元素在周期表中的位置由原子结构决定:(1)原子核外电子层数决定元素所在的周期;周期数=最大能层数(钯除外)(2)原子的价电子总数决定元素所在的族;如:29Cu 3d104s1 ,10+1=11尾数是1所以,是IB。Na 3s1 是IA。二、元素周期律1、原子半径(1)定义:是由实验方法测定的两相邻同种原子核之间距离的半数值。包括共价半径,金属半径,范氏(范德华)半径。(2)变化规律:A、同周期主族元素从左到右,原子半径逐渐减小。B、同主族元素从上到下,原子半径逐渐增大。2、电离能(KJ·mol-1)(1)定义:气态电中性基态原子失去1个电子而变成气态+1价阳离子所吸收的最低能量叫第一电离能(I1),通常叫电离能,(电离势)I1(2)、递变规律:A、同一周期:从左往右,第一电离能呈增大的趋势B、同一族:从上到下,第一电离能呈增大趋势。3、电负性:(1)定义:原子在分子中吸引键合电子能力相对大小的量度。(2)变化规律:A:同周期元素从左到右,电负性逐渐增大。B:同周期元素从上到下,元素的电负性逐渐减小。4、对角线规则:某些主族元素与右下方的主族元素的有些性质相似,被称为对角线规则。↑↑↑↑↑↑↓↑↑↓↓↑↑↑↑↓↑↑↑↑↓↓↑↓↑↓↑↓↑↓↑↓↑↑↑↑↓↑↓↑↓↑↑PAGE7南通市丰利中学化学组高一备课组教案 选修3《物质结构与性质》第三章 晶体结构与性质第一节 晶体常识第一课时教学内容分析:本节内容是安排在原子结构、分子结构以及结构决定性质的内容之后来学习,对于学生的学习有一定的理论基础。本节内容主要是通过介绍各种各样的固体为出发点来过渡到本堂课的主题——晶体和非晶体。而晶体和非晶体的学习是以各自的自范性和微观结构比较为切入点,进而得出得到晶体的一般途径以及晶体的常见性质和区分晶体的方法。教学目标设定:1、通过实验探究理解晶体与非晶体的差异。2、学会分析、理解、归纳和总结的逻辑思维方法,提高发现问题、分析问题和解决问题的能力。3、了解区别晶体与非晶体的方法,认识化学的实用价值,增强学习化学的兴趣。教学重难点:1、晶体与非晶体的区别2、晶体的特征教学方法建议:探究法教学过程设计:[新课引入]:前面我们讨论过原子结构、分子结构,对于化学键的形成也有了初步的了解,同时也知道组成千万种物质的质点可以是离子、原子或分子。又根据物质在不同温度和压强下,物质主要分为三态:气态、液态和固态,下面我们观察一些固态物质的图片。[投影]:1、蜡状白磷; 2、黄色的硫磺; 3、紫黑色的碘; 4、高锰酸钾[讲述]:像上面这一类固体,有着自己有序的排列,我们把它们称为晶体;而像玻璃这一类固体,本身原子排列杂乱无章,称它为非晶体,今天我们的课题就是一起来探究晶体与非晶体的有关知识。[板书]:一、晶体与非晶体[板书]:1、晶体与非晶体的本质差异[提问]:在初中化学中,大家已学过晶体与非晶体,你知道它们之间有没有差异?[回答]:学生:晶体有固定熔点,而非晶体无固定熔点。[讲解]:晶体有固定熔点,而非晶体无固定熔点,这只是晶体与非晶体的表观现象,那么他们在本质上有哪些差异呢?[投影] 晶体与非晶体的本质差异自范性 微观结构晶体 有 原子在三维空间里呈周期性有序排列非晶体 没有 原子排列相对无序[板书]:自范性:晶体能自发性地呈现多面体外形的性质。[解释]:所谓自范性即“自发”进行,但这里得注意,“自发”过程的实现仍需一定的条件。例如:水能自发地从高处流向低处,但不打开拦截水流的闸门,水库里的水不能下泻。[板书]:注意:自范性需要一定的条件,其中最重要的条件是晶体的生长速率适当。[投影]:通过影片播放出,同样是熔融态的二氧化硅,快速的冷却得到玛瑙,而缓慢冷却得到水晶过程。[设问]:那么得到晶体的途径,除了用上述的冷却的方法,还有没有其它途径呢?你能列举哪些?[板书]:2、晶体形成的一段途径:(1)熔融态物质凝固;(2)气态物质冷却不经液态直接凝固(凝华);(3)溶质从溶液中析出。[投影图片]:1、从熔融态结晶出来的硫晶体;2、凝华得到的碘晶体;3、从硫酸铜饱和溶液中析出的硫酸铜晶体。[探究实验]:完成教材实验3-1,请同学们认真观察,并提问同学观察到什么现象。[回答]:首先碘升华,然后在表面皿下面出现碘的固体。[讲解]:事实上,这里提到的固体就是凝华得到的碘晶体。[过渡]:许多固体的粉末用肉眼是看不见晶体的,但我们可以借助于显微镜观察,这也证明固体粉末仍是晶体,只不过晶粒太小了![投影]:晶体二氧化硅和非晶体二氧化硅的示意图[提问]:小组讨论,通过比较,可以得出什么样结论。[回答]:晶体的原子排列有序,而非晶体则不是。[讲述]:从本质上来说,晶体的自范性是晶体中粒子在微观空间里所呈的现周期性。[讲述]:通过前面对晶体与非晶体的讨论,现在我们来总结一下,晶体有哪些特点:[板书]:3、晶体的特点:(1)有固定的几何外形;(2)有固定的熔点;(3)有各向异性。[解析]:对于同一幅图案来说,从不同的方向审视,也会产生不同的感受,那么对于晶体来说,许多物理性质:如硬度、导热性、光学性质等,因研究角度不同而产生差异,即为各向异性。例如:蓝晶石(Al2O3·SiO2)在不同方向上的硬度不同;石墨在与层垂直的方向上的导电率与层平行的方向上的导电率1∕104。[小结]:可以根据晶体特点区别某一固体属于晶体还是非晶体。然而,得出区别晶体与非晶体最可靠的方法是利用x-射线衍射实验。[提问]:通过这节课的学习,现在请你用一句话来定义晶体,应该怎么说?[回答]:学生1、内部原子有规律的排列的物质;学生2、内部原子有规律的排列,且外观为多面体的固体物质。[板书]:4、晶体的定义:质点(分子、离子、原子)在空间有规则地排列成的,具有整齐外型,以多面体出现的固体物质。练习:1、下列关于晶体与非晶体的说法正确的是:A、 晶体一定比非晶体的熔点高B、 晶体有自范性但排列无序C、 非晶体无自范性而且排列无序D、 固体SiO2一定是晶体2、区别晶体与非晶体最可靠的科学方法是:A、 熔沸点B、 硬度C、 颜色D、 x-射线衍射实验3、在我们的生活中遇到许多固体,通过今天这节课的学习,我们知道固体可以分为晶体与非晶体。请你举出常见的晶体与非晶体的实例。答案:1、C;2、D;3、晶体:玛瑙、水晶、硫晶体等等;非晶体玻璃、水泥等等。4、下列不属于晶体的特点是:A、 一定有固定的几何外形B、 一定有各向异性C、 一定有固定的熔点D、 一定是无色透明的固体5、下列过程可以得到晶体的有:A、 对NaCl饱和溶液降温,所得到的固体B、 气态H2O冷却为液态,然后再冷却成的固态C、 熔融的KNO3冷却后所得的固体D、 将液态的玻璃冷却成所得到的固体6、晶体具有各向异性。如蓝晶石(Al2O3·SiO2)在不同方向上的硬度不同;又如石墨在与层垂直的方向上的导电率与层平行的方向上的导电率1∕104。晶体的各向异性主要表现在是:①硬度 ②导热性 ③导电性 ④光学性质A、①③ B、②④ C、①②③ D、①②③④7、一些不法商人制造假宝石来牟取暴利,你能否根据晶体物理性质的各向异性的特点,列举出一些可能有效鉴别假宝石的方法?第二课时一、晶胞定义:晶体结构中的基本单元叫晶胞二、晶胞中原子个数的计算方法:位于晶胞顶点的微粒,实际提供给晶胞的只有1/8;位于晶胞棱边的微粒,实际提供给晶胞的只有1/4;位于晶胞面心的微粒,实际提供给晶胞的只有1/2;位于晶胞中心的微粒,实际提供给晶胞的只有1。练习:1、现有甲、乙、丙、丁四种晶胞(如图2-8所示),可推知:甲晶体中A与B的离子个数比为;乙晶体的化学式为;丙晶体的化学式为______;丁晶体的化学式为______。2、钙-钛矿晶胞结构如图2-9所示。观察钙-钛矿晶胞结构,求该晶体中,钙、钛、氧的微粒个数比为多少?3、晶体硼的基本结构单元都是由硼原子组成的正二十面体,其中含有20个等边三角形的面和一定数目的顶角,每个顶角各有一个硼原子。如图2-10所示,回答:(1)键角____;(2)晶体硼中的硼原子数____个;B—B键____条?4、在碳单质的成员中还有一种混合型晶体——石墨,如图2-11所示。它是层状结构,层与层之间依靠作用力相结合。每层内部碳原子与碳原子之间靠作用力相结合,其键角。分析图中每个六边形含有个碳原子。5、C70分子是形如椭球状的多面体,该结构的建立基于以下考虑:(1)C70分子中每个碳原子只跟相邻的3个碳原子形成化学键;(2)C70分子中只含有五边形和六边形;(3)多面体的顶点数、面数和棱边数的关系遵循欧拉定理:顶点数+面数-棱边数=2。根据以上所述确定:(1)C70分子中所含的单键数和双键数;(2)C70分子中的五边形和六边形各有多少?第二节 分子晶体与原子晶体第一课时 分子晶体教材内容分析:晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。本节延续前面一节离子晶体,以“构成微粒---晶体类型---晶体性质”的认知模式为主线,着重探究了典型分子晶体冰和干冰的晶体结构特点。并谈到了分子间作用力和氢键对物质性质的影响。使学生对分子晶体的结构和性质特点有里一个大致的了解。并为后面学习原子晶体做好了知识准备,以形成比较。教学目标设定:1、使学生了解分子晶体的组成粒子、结构模型和结构特点及其性质的一般特点。2、使学生了解晶体类型与性质的关系。3、使学生理解分子间作用力和氢键对物质物理性质的影响。4、知道一些常见的属于分子晶体的物质类别。5、使学生主动参与科学探究,体验研究过程,激发他们的学习兴趣。教学重点难点:重点掌握分子晶体的结构特点和性质特点难点是氢键的方向性和氢键对物体物理性质的影响从三维空间结构认识晶胞的组成结构教学方法建议:运用模型和类比方法诱导分析归纳教学过程设计:复问:什么是离子晶体?哪几类物质属于离子晶体?(离子化合物为固态时均属于离子晶体,如大部分盐、碱、金属氧化物属于离子晶体)投影晶体类型 离子晶体结构 构成晶体的类型粒子间的相互作用力性质 硬度熔沸点导电性溶解性展示实物:冰、干冰、碘晶体教师诱导:这些物质属于离子晶体吗?构成它们的基本粒子是什么?这些粒子间通过什么作用结合而成的?学生分组讨论回答板书 :分子通过分子间作用力形成分子晶体一、分子晶体1、定义:含分子的晶体称为分子晶体也就是说:分子间以分子间作用力相结合的晶体叫做分子晶体看图3-9,如:碘晶体中只含有I2分子,就属于分子晶体 问:还有哪些属于分子晶体?2、较典型的分子晶体有非金属氢化物,部分非金属单质,部分非金属氧化物,几乎所有的酸,绝大多数有机物的晶体。3、分子间作用力和氢键过度:首先让我们回忆一下分子间作用力的有关知识阅读必修2P22科学视眼教师诱导:分子间存在着一种把分子聚集在一起的作用力叫做分子间作用力,也叫范徳华力。分子间作用力对物质的性质有怎么样的影响。学生回答:一般来说,对与组成和结构相似的物质,相对分子量越大分子间作用力越大,物质的熔沸点也越高。教师诱导:但是有些氢化物的熔点和沸点的递变却与此不完全符合,如:NH3,H2O和HF的沸点就出现反常。指导学生自学:教材中有些氢键形成的条件,氢键的定义,氢键对物质物理性质的影响。多媒体动画片氢键形成的过程:①氢键形成的条件:半径小,吸引电子能力强的原子(N,O,F)与H核②氢键的定义:半径小、吸引电子能力强的原子与H核之间的静电吸引作用。氢键可看作是一种比较强的分子间作用力。③氢键对物质性质的影响:氢键使物质的熔沸点升高。④投影 氢键的表示 如:冰一个水分子能和周围4个水分子从氢键相结合组成一个正四面体 见图3-11教师诱导:在分子晶体中,分子内的原子以共价键相结合,而相邻分子通过分子间作用力相互吸引。分子晶体有哪些特性呢?学生回答4.分子晶体的物理特性:熔沸点较低、易升华、硬度小。固态和熔融状态下都不导电。教师诱导:大多数分子晶体结构有如下特征:如果分子间作用力只是范德华力。以一个分子为中心,其周围通常可以有几个紧邻的分子。如图3-10的O2,C60,我们把这一特征叫做分子紧密堆积。如果分子间除范德华力外还有其他作用力(如氢键),如果分子间存在着氢键,分子就不会采取紧密堆积的方式学生讨论回答:在冰的晶体中,每个水分子周围只有4个紧邻的水分子,形成正四面体。氢键不是化学键,比共价键弱得多却跟共价键一样具有方向性,而氢键的存在迫使四面体中心的每个水分子与四面体顶角方向的4个相邻水分子的相互吸引,这一排列使冰晶体中空间利用率不高,皆有相当大的空隙使得冰的密度减小。教师诱导,还有一种晶体叫做干冰,它是固体的CO2的晶体。干冰外观像冰,干冰不是冰。其熔点比冰低的多,易升华。出示干冰的晶体结构晶胞模型。教师讲解:干冰晶体中CO2分子之间只存在分子间力不存在氢键,因此干冰中CO2分子紧密堆积,每个CO2分子周围,最近且等距离的CO2分子数目有几个?一个CO2分子处于三个相互垂直的面的中心,在每个面上,处于四个对角线上各有一个CO2分子周围,所以每个CO2分子周围最近且等距离的CO2分子数目是12个。投影小结完成表格晶体类型 分子晶体结构 构成晶体的粒子 分子粒子间的相互作用力 分子间作用力性质 硬度 小熔沸点 较低导电性 固态熔融状态不导电溶解性 相似相溶课堂巩固练习1、下列属于分子晶体的一组物质是A 、CaO、NO、CO B、 CCl4、H2O2、HeC、 CO2、SO2、NaCl D 、CH4、O2、Na2O2、下列性质符合分子晶体的是A、 熔点1070℃,易熔于水,水溶液能导电B、 熔点是10.31℃,液体不导电,水溶液能导电C、 熔点97.81℃,质软,能导电,密度是0.97g/cm3D、 熔点,熔化时能导电,水溶液也能导电3、下列物质的液体中,不存在分子是A 二氧化硅 B 二氧化硫 C 二氧化碳 D二硫化碳4、下列说法正确的是A、离子化合物中可能含有共价键B、分子晶体中的分子内不含有共价键C、分子晶体中一定有非极性共价键D、分子晶体中分子一定紧密堆积5、干冰汽化时,下列所述内容发生变化的是A、分子内共价键 B、分子间作用力C、分子间距离 D、分子间的氢键6、“可燃冰”是深藏在海底的白色晶体,存储量巨大,是人类未来极具潜在优势的洁净能源。在高压低温条件下,由水分子形成空间笼状结构,笼中“关”甲烷而形成,如某种可燃冰的存在形式为CH4·5.75H2O。(1)“可燃冰” CH4·5.75H2O的分子中,m(CH4):m(H2O)=(2)若要从“可燃冰”中分离出甲烷,可用下列两中方法:①在一定温度下, 使气体从水合物中分离出来,在一定压力下, 使气体从水合物中分离出来。7、选择以下物体填写下列空白A干冰 B氯化铵 C烧碱 D固体碘⑴晶体中存在分子的是 (填写序号,下同)⑵晶体中既有离子键又有共价键的是⑶熔化时不需要破坏共价键的是⑷常况下能升华的是8.四氯化硅的分子结构与四氯化碳类似,对其作出如下推测①四氯化硅晶体是分子晶体。②常温常压四氯化硅下是液体。③四氯化硅分子是由极性键形成的分子。④四氯化硅熔点高于四氯化碳。其中正确的是A只有① B只有①② C只有②③ D①②③④第二课时〖教学目标设定〗1、掌握原子晶体的概念,能够区分原子晶体和分子晶体。2、了解金刚石等典型原子晶体的结构特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。〖教学难点重点〗原子晶体的结构与性质的关系〖教学过程设计〗复习提问:1、什么是分子晶体?试举例说明。2、分子晶体通常具有什么样的物理性质?引入新课:分析下表数据,判断金刚石是否属于分子晶体项目/物质 干冰 金刚石熔点 很低 3550℃沸点 很低 4827℃展示:金刚石晶体阅读:P71 ,明确金刚石的晶型与结构归纳:1.原子晶体:相邻原子间以共价键相结合而形成的空间网状结构的晶体。2.构成粒子:原子;3.粒子间的作用:共价键;展示:金刚石晶体结构填表:键长 键能 键角 熔点 硬度归纳:4.原子晶体的物理性质熔、沸点_______,硬度________;______________一般的溶剂;_____导电。思考:(1)原子晶体的化学式是否可以代表其分子式,为什么?(2)为什么金刚石的熔沸点很高、硬度很大?(3)阅读:P72 ,讨论“学与问 1 ”归纳:晶体熔沸点的高低比较①对于分子晶体,一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔沸点也越高。②对于原子晶体,一般来说,原子间键长越短,键能越大,共价键越稳定,物质的熔沸点越高,硬度越大。合作探究:(1)在金刚石晶体中,每个C与多少个C成键?形成怎样的空间结构?最小碳环由多少个石中,含CC原子组成?它们是否在同一平面内?(2)在金刚石晶体中,C原子个数与C—C键数之比为多少?(3)12克金刚—C键数为多少NA?比较:CO2与SiO2晶体的物理性质物质/项目 熔点℃ 状态(室温)CO2 -56.2 气态SiO2 1723 固态阅读:P72 ,明确SiO2的重要用途推断:SiO2晶体与CO2晶体性质相差很大,SiO2晶体不属于分子晶体展示:展示SiO2的晶体结构模型(看书、模型、多媒体课件),分析其结构特点。引导探究:SiO2和C02的晶体结构不同。在SiO2晶体中,1个Si原子和4个O原子形成4个共价键,每个Si原子周围结合4个O原子;同时,每个O原子跟2个Si原子相结合。实际上,SiO2晶体是由Si原子和O原子按1:2的比例所组成的立体网状的晶体。阅读:P72 ,明确常见的原子晶体5.常见的原子晶体有____________________________等。6.各类晶体主要特征类型 比较 分子晶体 原子晶体构成晶体微粒形成晶体作用力物理性质 熔沸点硬度导电性传热性延展性溶解性典型实例 P4、干冰、硫 金刚石、二氧化硅阅读:P72 ,讨论“学与问 2 ”归纳:判断晶体类型的依据(1)看构成晶体的微粒种类及微粒间的相互作用。对分子晶体,构成晶体的微粒是______________,微粒间的相互作用是_____ ______;对于原子晶体,构成晶体的微粒是__ _____,微粒间的相互作用是___________键。(2)看物质的物理性质(如:熔、沸点或硬度)。一般情况下,不同类晶体熔点高低顺序是原子晶体比分子晶体的熔、沸点高得多〖练习〗1、下列的晶体中,化学键种类相同,晶体类型也相同的是A、SO2与SiO2 B、C02与H2O C、C与HCl D、CCl4与SiC2、碳化硅SiC的一种晶体具有类似金刚石的结构,其中C原子和S原子的位置是交替的。在下列三种晶体①金刚石 ②晶体硅 ③碳化硅中,它们的熔点从高到低的顺序是A、①③② B、②③① C、③①② D、②①③3、1999年美国《科学》杂志报道:在40GPa高压下,用激光器加热到1800K,人们成功制得了原子晶体干冰,下列推断中不正确的是A、原子晶体干冰有很高的熔点、沸点,有很大的硬度B、原子晶体干冰易气化,可用作制冷材料C、原子晶体干冰的硬度大,可用作耐磨材料D、每摩尔原子晶体干冰中含4molC—O键4、①在SiO2晶体中,每个Si原子与 个O原子结合,构成 结构,Si位于_____ ________,O 位于________ _____②在SiO2晶体中,Si原子与O原子个数比为③在SiO2晶体中,最小的环为 个Si和 个O组成的 环。5、单质硼有无定形和晶体两种,参考下表数据金刚石 晶体硅 晶体硼熔点 >3823 1683 2573沸点 5100 2628 2823硬度 10 7.0 9.5①晶体硼的晶体类型属于____________晶体,理由是________________。已知晶体硼结构单元是由硼原子组成的正二十面体,其中有20个等边三角形的面和一定数目的顶点,每个项点上各有1个B原子。通过视察图形及推算,此晶体体结构单元由________________个硼原子构成。其中B—B键的键角为____________。〖作业〗1.下列晶体中不属于原子晶体的是(A)干冰 (B)金刚砂 (C)金刚石 (D)水晶2.在金刚石的网状结构中,含有共价键形成的碳原子环,其中最小的环上,碳原子数是(A)2个 (B)3个 (C)4个 (D)6个3.下列各物质中,按熔点由低到高排列正确的是(A)O2、I2、Hg (B)CO2、K、SiO2(C)Na、K、Rb (D)SiC、NaCl、SO24.下列各晶体中任意一个原子都被相邻的4个原子所包围;以共价键结合成正四面体结构,并向空间伸展成网状结构的是(A)甲烷 (B)石墨 (C)晶体硅 (D)水晶5.在x mol石英晶体中,含有Si-O键数是(A)x mol (B)2x mol (C)3 x mol (D)4x mol6.固体熔化时,必须破坏非极性共价键的是(A)冰 (B)晶体硅 (C)溴 (D)二氧化硅7.石墨晶体是层状结构,在每一层内;每一个碳原于都跟其他3个碳原子相结合,如图是其晶体结构的俯视图,则图中7个六元环完全占有的碳原子数是(A)10个 (B)18个 (C)24个 (D)14个8.石英玻璃是将纯石英在1600℃高温下熔化,冷却后形成的玻璃体。关于石英玻璃的结构和性质的叙述中正确的是(A)石英玻璃属于原子晶体(B)石英玻璃耐高温且能抵抗一切酸的腐蚀(C)石英玻璃的结构类似于液体(D)石英玻璃能经受高温剧变且能抗碱的腐蚀9.已知C3N4晶体具有比金刚石还大的硬度,且构成该晶体的微粒间只以单键结合。下列关于C3N4晶体的说法错误的是(A)该晶体属于原子晶体,其化学键比金刚石中的碳碳键更牢固(B)该晶体中每个碳原子连接4个氮原子、每个氮原子连接3个碳原子(C)该晶体中碳原子和氮原子的最外层都满足8电子结构(D)该晶体与金刚石相似,都是原子间以非极性键形成空间网状结构10.氮化硅是一种高温陶瓷材料,它的硬度大、熔点高、化学性质稳定。工业上曾普遍采用高纯硅与纯氮在1 300℃反应获得。(1)氮化硅晶体属于__________晶体。(2)已知氮化硅的晶体结构中,原子间以单键相连,且N原子和N原子,Si原子和S原子不直接相连,同时每个原子都满足8电子稳定结构。请写出氮化硅的化学式__________(3)现用SiCl4和N2在H2气氛保护下,加强热发生反应,可得较高纯度的氮化硅。反应的化学方程式为__________________________________________________11.短周期元素K、Y、Z在周期表中位置关系如图:XYZ(1)x元素的单质分子式是_______,若x核内中子数和质子数相等,x单质的摩尔质量为_______,单质是_______晶体。(2)z单质的晶体类型属于_______,Z的氢化物和最高价氧化物的浓溶液反应的化学方程式为____________________________。第三节 金属晶体第1课时【教材内容分析】在必修2中,学生已初步了解了物质结构和元素周期律、离子键、共价键、分子间作用力等知识。本节内容是在介绍了分子晶体和原子晶体等知识的基础上,再介绍金属晶体的知识,可以使学生对于晶体有一个较全面的了解,也可使学生进一步深化对所学的知识的认识。教材从介绍金属键和电子气理论入手,对金属的通性作出了解释,并在金属键的基础上,简单的介绍了金属晶体的几种常见的堆积模型,让学生对金属晶体有一个较为全面的认识。【教学目标】1、理解金属键的概念和电子气理论2、初步学会用电子气理论解释金属的物理性质【教学难点】金属键和电子气理论【教学重点】金属具有共同物理性质的解释。【教学过程设计】【引入】大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢?【板书】一、金属键金属晶体中原子之间的化学作用力叫做金属键。【讲解】金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。【强调】金属晶体是以金属键为基本作用力的晶体。【板书】二、电子气理论及其对金属通性的解释1.电子气理论【讲解】经典的金属键理论叫做“电子气理论”。它把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子形成可与气体相比拟的带负电的“电子气”,金属原子则“浸泡”在“电子气”的“海洋”之中。2.金属通性的解释【展示金属实物】展示的金属实物有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。【教师引导】从上述金属的应用来看,金属有哪些共同的物理性质呢 【学生分组讨论】请一位同学归纳,其他同学补充。【板书】金属共同的物理性质容易导电、导热、有延展性、有金属光泽等。⑴金属导电性的解释在金属晶体中,充满着带负电的“电子气”,这些电子气的运动是没有一定方向的,但在外加电场的条件下电子气就会发生定向移动,因而形成电流,所以金属容易导电。【设问】导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中电子气中的自由电子担当什么角色 ⑵金属导热性的解释金属容易导热,是由于电子气中的自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。⑶金属延展性的解释当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。因此,金属都有良好的延展性。【练习】1.金属晶体的形成是因为晶体中存在A、金属离子间的相互作用B、金属原子间的相互作用C、金属离子与自由电子间的相互作用D、金属原子与自由电子间的相互作用2.金属能导电的原因是A、金属晶体中金属阳离子与自由电子间的相互作用较弱B、金属晶体中的自由电子在外加电场作用下可发生定向移动C、金属晶体中的金属阳离子在外加电场作用下可发生定向移动D、金属晶体在外加电场作用下可失去电子课后阅读材料1.超导体——一类急待开发的材料一般说来,金属是电的良好导体(汞的很差)。 1911年荷兰物理学家H·昂内斯在研究低温条件下汞的导电性能时,发现当温度降到约4 K(即—269、)时汞的电阻“奇异”般地降为零,表现出超导电性。后又发现还有几种金属也有这种性质,人们将具有超导性的物质叫做超导体。2.合金两种和两种以上的金属(或金属与非金属)熔合而成的具有金属特性的物质,叫做合金,合金属于混合物,对应的固体为金属晶体。合金的特点①仍保留金属的化学性质,但物理性质改变很大;②熔点比各成份金属的都低;③强度、硬度比成分金属大;④有的抗腐蚀能力强;⑤导电性比成分金属差。3.金属的物理性质由于金属晶体中存在大量的自由电子和金属离子(或原子)排列很紧密,使金属具有很多共同的性质。(1)状态:通常情况下,除Hg外都是固体。(2)金属光泽:多数金属具有光泽。但除Mg、Al、 Cu、Au在粉末状态有光泽外,其他金属在块状时才表现出来。(3)易导电、导热:由于金属晶体中自由电子的运动,使金属易导电、导热。(4)延展性(5)熔点及硬度:由金属晶体中金属离子跟自由电子间的作用强弱决定。金属除有共同的物理性质外,还具有各自的特性。①颜色:绝大多数金属都是银白色,有少数金属具有颜色。如Au金黄色Cu紫红色Cs银白略带金色。②密度:与原子半径、原子相对质量、晶体质点排列的紧密程度有关。最重的为锇(Os)铂(Pt)最轻的为锂(Li)③熔点:最高的为钨(W),最低的为汞(Hg),Cs,为28.4℃ Ca为30℃④硬度:最硬的金属为铬(Cr),最软的金属为钾 (K),钠(Na),铯(Cs)等,可用小刀切割。⑤导电性:导电性能强的为银(Ag),金(Au),铜 (Cu)等。导电性能差的为汞(Hg)⑥延展性:延展性最好的为金(Au),Al第二课时【教材内容分析】晶体知识和分子晶体、原子晶体已经做了介绍,学生对晶体内微粒的空间排列有了初步的认识。学生自己探究金属晶体的结构有了可能。【教学目标设定】1.了解金属晶体内原子的几种常见排列方式2.训练学生的动手能力和空间想象能力。3. 培养学生的合作意识【教学重点难点】金属晶体内原子的空间排列方式【教学方法建议】活动探究【教学过程设计】【引入】分子晶体中,分子间的范德华力使分子有序排列;原子晶体中,原子之间的共价键使原子有序排列;金属晶体中,金属键使金属原子有序排列。今天,我们一起讨论有关金属原子的空间排列问题。【分组活动1】利用20个大小相同的玻璃小球,有序地排列在水平桌面上(二维平面上),要求小球之间紧密接触。可能有几种排列方式。讨论每一种方式的配位数。(配位数:同一层内与一个原子紧密接触的原子数)【学生活动1】学生分四组活动,各由一人汇报结果。利用多媒体展示,学生排列结果主要介绍以下两种方式。(配位数:同一层内与一个原子紧密接触的原子数)非密置层,配位数4 密置层,配位数6我们继续讨论,原子在三维空间的排列。首先讨论非密置层这种情况。【学生活动2】非密置层排列的金属原子,在空间内可能的排列。汇总各类情况逐一讨论。(一)简单立方体堆积这种堆积方式形成的晶胞是一个立方体,每个晶胞含1个原子,被称为简单立方堆积。这种堆积方式的空间利用率太低,只有金属钋采取这种堆积方式。(二)钾型如果是非密置层上层金属原子填入下层的金属原子形成的凹穴中,每层均照此堆积,如下图:这种堆积方式的空间利用率显然比简单立方堆积的高多了,许多金属是这种堆积方式,如碱金属,简称为钾型。第三课时【教材内容分析】晶体知识和分子晶体、原子晶体已经做了介绍,学生对晶体内微粒的空间排列有了初步的认识。学生自己探究金属晶体的结构有了可能。【教学目标设定】1.了解金属晶体内原子的几种常见排列方式2.训练学生的动手能力和空间想象能力。3. 培养学生的合作意识【教学重点难点】金属晶体内原子的空间排列方式【教学方法建议】活动探究【教学过程设计】密置层的原子按钾型堆积方式堆积,会得到两种基本堆积方式,镁型和铜型。镁型如下图左侧,按ABABABAB……的方式堆积;铜型如图右侧,按ABCABCABC……的方式堆积.这两种堆积方式都是金属晶体的最密堆积,配位数均为12,空间利用率均为74℅,但所得的晶胞的形式不同.[归纳与整理]金属晶体的四种堆积模型对比堆积模型 采用这种堆积的典型代表 空间利用率 配位数 晶胞简单立方 Po 52℅ 6钾型 Na K Fe 68℅ 8镁型 Mg Zn Ti 74℅ 12铜型 Cu Ag Au 74℅ 12混合晶体石墨不同于金刚石,这的碳原子不像金刚石的碳原子那样呈sp3杂化.而是呈sp2杂化,形成平面六元并环结构,因此石墨晶体是层状结构的,层内的碳原子的核间距为142pm层间距离为335pm,说明层间没有化学键相连,是靠范德华力维系的;石墨的二维结构内,每一个碳原子的配位数为3,有一个末参与杂化的2p电子,它的原子轨道垂直于碳原子平面。石墨晶体中,既有共价键,又有金属键,还有范德华力,不能简单地归属于其中任何一种晶体,是一种混合晶体。第四节 离子晶体第一课时教学内容分析:学生具备了离子键、离子半径、离子化合物等基础知识,本节直接给出氯化钠、氯化铯晶胞,然后在科学探究的基础上介绍影响离子晶体结构的因素,通过制作典型的离子晶体模型来进一步理解离子晶体结构特点,为学习晶格能作好知识的铺垫。教学目标设定:1.掌握离子晶体的概念,能识别氯化钠、氯化铯、氟化钙的晶胞结构。2.学会离子晶体的性质与晶胞结构的关系。3.通过探究知道离子晶体的配位数与离子半径比的关系。4、通过碳酸盐的热分解温度与阳离子半径的自学,拓展学生视野。教学重点难点:1、离子晶体的物理性质的特点2、离子晶体配位数及其影响因素教学方法建议:分析、归纳、讨论、探究教学过程设计:[引入]1、什么是离子键?什么是离子化合物?2、下列物质中哪些是离子化合物?哪些是只含离子键的离子化合物?Na2O NH4Cl O2 Na2SO4 NaCl CsCl CaF23、我们已经学习过几种晶体?它们的结构微粒和微粒间的相互作用分别是什么?[板书]一、离子晶体[展示] NaCl 、CsCl晶体模型[板书]阴、阳离子通过离子键形成离子晶体1、离子晶体定义:由阳离子和阴离子通过离子键结合而成的晶体注:(1)结构微粒:阴、阳离子(2)相互作用:离子键(3)种类繁多:含离子键的化合物晶体:强碱、活泼金属氧化物、绝大多数盐(4)理论上,结构粒子可向空间无限扩展[思考]下列物质的晶体,哪些属离子晶体?离子晶体与离子化合物之间的关系是什么?干冰、NaOH、H2SO4 、K2SO4 、NH4Cl、CsCl[投影]2、离子晶体的物理性质及解释性质 解释硬度( )熔沸点( )溶于水( )熔融( )离子晶体溶解性差异较大:NaCl、 KNO3、(NH4)2SO4_______BaSO4 、CaCO3_______[板书]3、离子晶体中离子键的配位数(C.N.)(1)定义:是指一个离子周围邻近的异电性离子的数目[探究] NaCl和CsCl晶体中阴、阳离子的配位数离子晶体 阴离子的配位数 阳离子的配位数NaClCsCl(2)决定离子晶体结构的主要因素:正、负离子的半径比[投影]离子 Na+ Cs+ Cl-离子半径/pm 95 169 181[学生活动] NaCl、CsCl中正、负离子的半径比和配位数NaCl CsClr+/r- = r+/r- =C.N.=6 C.N.=8[自主探究]CaF2晶体中阴、阳离子的配位数[板书](3)影响阴、阳离子的配位数的因素|①正、负离子半径比的大小②正、负离子所带电荷的多少[学生活动]四种类型晶体的比较晶体类型 离子晶体 分子晶体 原子晶体 金属晶体构成粒子粒子间相互作用可能的相互作用硬度熔沸点导电性溶解性典型实例[练习]1、下列含有极性键的离子晶体是1 醋酸钠 ②氢氧化钾 ③金刚石 ④乙醇 ⑤氯化钙A、①②⑤ B、①② C、①④⑤ D、①⑤2下列说法正确的是A、 一种金属元素和一种非金属元素一定能形成离子化合物B、 离子键只存在于离子化合物中C、 共价键只存在于共价化合物中D、 离子化合物中必定含有金属元素3、CsCl晶体中Cs+的 C.N.是 ____ Cl-的C.N.是_____.CaF2晶体中Ca2+的 C.N.是 ____ F-的C.N.是_____.已知KCl的晶体结构与NaCl的相似,则KCl晶体中K+的 C.N.是 ____ Cl-的C.N.是_____.第二课时教学目标设定:通过分析数据和信息,能说明晶格能的大小与离子晶体性质的关系。教学重点、难点:晶格能的定义和应用。教学方法建议:分析、归纳、应用教学过程设计:[复 习]:四种类型晶体的比较:晶体类型 离子晶体 分子晶体 原子晶体 金属晶体构成粒子粒子间相互作用硬度熔沸点导电性溶解性典型实例[阅读与思考]:阅读下表,讨论、分析得出哪些结论?(小组讨论、交流、汇报)表1:F- Cl- Br- I-Li+ 1036 853 807 757Na+ 923 786 747 704K+ 821 715 682 649Cs+ 785 689 660 630Rb+ 740 659 631 604表2:AB型离子晶体 离子电荷 晶格能(KJ/mol 熔点 摩氏硬度NaF 1 923 993 3.2NaCl 1 786 801 2.5NaBr 1 747 747 <2.5NaI 1 704 661 <2.5MgO 2 3791 2852 6.5CaO 2 3401 2614 4.5SrO 2 3223 2430 3.5BaO 2 3054 1918 3.3[板 书]:二、晶格能1、定义:气态离子形成1mol离子晶体时释放的能量。2、规律:(1)离子电荷越大,离子半径越小的离子晶体的晶格能越大。(2)晶格能越大,形成的离子晶体越稳定,熔点越高,硬度越大。[科学视野]:阅读P84----科学视野,从中你知道了什么?[板 书]:3、岩浆晶出规则:晶格能高的晶体,熔点较高,更容易在岩浆冷却过程中先结晶析出。(美国矿物学家鲍文)教学习题设计:1、下列大小关系正确的是A、晶格能:NaClCaOC、熔点:NaI>NaBr D、熔沸点:CO2>NaCl2、已知:三种氟化物的晶格能如下表:晶格能(KJ/mol)Na+ 923Mg2+ 2957Al3+ 5492三种氟化物的晶格能的递变原因是 。3、已知:硅酸盐和石英的晶格能如下表:硅酸盐矿物和石英 晶格能(KJ/mol)橄榄石 4400辉石 4100角闪石 3800云母 3800长石 2400石英 2600回答下列问题:(1)橄榄石和云母晶出的顺序是 。(2)石英总是在各种硅酸盐析出后才晶出的原因是 。(3)推测云母和橄榄石的熔点顺序为 ,硬度大小为 。4、下表列出了钠的卤化物和硅的卤化物的熔点:NaX NaF NaCl NaBr NaI熔点 995 801 775 651SiX4 SiF4 SiCl4 SiBr4 SiI4熔点 —90.2 —70.4 5.2 120.5回答下列问题:(1)钠的卤化物的熔点比相应的硅的卤化物的熔点高很多,其原因是 。(2)NaF 的熔点比NaBr的熔点高的原因是 。SiF4 的熔点比SiBr4的熔点低的原因是 。(3)NaF和NaBr的晶格能的高低顺序为 ,硬度大小为 。- 2 - 展开更多...... 收起↑ 资源列表 选修3《物质结构与性质》第一章物质结构与性质教案教案(打印).doc 选修3《物质结构与性质》第三章晶体结构与性质教案(打印).doc 选修3《物质结构与性质》第二章分子结构与性质教案(打印).doc