资源简介 人教版六年级上册《百分数(一)》易错点解析《百分数(一)》要点知识一、百分数的由来200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。1、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。百分数通常不写成分数形式,而采用百分号“%”,百分数后面不能带单位名称。2、百分数和分数的主要联系与区别:(1)联系:都可以表示两个量的倍比关系。 (2)区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。③、百分数的读法和分数的读法大体相同,也是先读分母,后读分子,但要注意读百分数的分母时,不能读成一百分之几,而只能读作“百分之几”3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示。二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。(二)百分数的和分数的互化1、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。2、分数化成百分数:① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。② 先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(三)常见的分数与小数、百分数之间的互化1/2 = 0.5 = 50% 1/5 = 0.2 = 20% 5/8 = 0.625 = 62.5% 三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。)2、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题:数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”: 单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量3、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。解法:(建议:最好用方程解答)(1)方程: 根据数量关系式设未知量为X,用方程解答。(2)算术(用除法): 分率对应量÷对应分率 = 单位“1”的量 4、求一个数比另一个数多(少)百分之几的问题:两个数的相差量÷单位“1”的量× 100% 或:① 求多百分之几:(大数÷小数 – 1) × 100% ② 求少百分之几:( 1 - 小数÷大数)× 100% (二)、折扣1、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。几折就表示十分之几,也就是百分之几十。例如八折=0.8=80﹪,六折五=0.65=65﹪2、 一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%几成”就是十分之几,也就是百分之几十。 如:五成表示( )%“折扣”表示某种商品降价的幅度。 如:75折就表示现价是原价( )%(三)、纳税1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。3、应纳税额:缴纳的税款叫做应纳税额。4、税率:应纳税额与各种收入的比率叫做税率。5、应纳税额的计算方法:应纳税额 = 总收入 ×税率(四)利息1、存款分为活期、整存整取和零存整取等方法。2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。3、本金:存入银行的钱叫做本金。4、利息:取款时银行多支付的钱叫做利息。5、利率:利息与本金的比值叫做利率。6、利息的计算公式:利息=本金×利率×时间7、注意:如要上利息税(国债和教育储藏的利息不纳税),则:税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)8、本息=本金+利息易错题解析一、填空1、六(1)班今天到校40人,请病假的5人,该班的出勤率是(88.9%)。【解析:用到校人数就是出勤人数。出勤人数÷全班人数×100%=出勤率。40÷(40+5)×100%≈88.9%】2、(12.6)米比9米多40%【9×(1+40%)=12.6】 , 9米比(20)少55%【9÷(1-55%)=20】 ,200千克比160千克多(25)%【(200-160)÷160=25%】;160千克比200千克少(20)%【(200-160)÷200=20%】;16米比(6.4)米多它的60%【16×(1-60%)=6.4 注意:“它”是指16。】;( )比32少30%【32×(1-30%)=22.4】 。【解析:本题主要是考查 单位“1”(总量)、对应量、对应分率之间的关系。单位“1”(总量)×对应分率=对应量】3、某种皮衣价格为1650元,打八折出售可盈利10%。那么若以1650元出售,可盈利(450)元。【解析:本题关键是要先算出进价,原题中的“10%”是针对进价的。设皮衣的进价为x元。(1+10%)x=1650*80% 解得:x=1200。以1650元出售,可盈利:1650-1200=450(元)】二、判断1、某商品先提价5%,后又降阶5%,这件商品的现价与原价相等。(×)【解析:错。两个5%的单位“1”不一样。1×(1+5%)×(1-5%)=0.9975 值小于1表示现价比原价少,值大于1表示多。】2、在含盐20%的盐水中加入同样多的盐和水后,盐水的含盐率不变。(×)【解析:错。用假设法来验证:假设盐是20克,水是80克,则含盐就是20%。如果分别同时加入10克盐和水,那么这时含盐率就是:(20+10)÷(20+10+80+10)×100%=25%,含盐率变大了。】3、如果甲数比乙数多25%,那么乙数就比甲数少25%。 (×)【解析:错。两个25%相对的单位1不同。应该是:甲数比乙数多25%,乙数就比甲数少20%。25%÷(1+25%)=20%】三、选择1、利息与本金相比(A)A、利息大于本金 B、利息小于本金 C、利息不一定小于本金【解析:C。利率表示利息与本金的比率;利息可能小于本金,也可能大于本金;所以利息不一定小于本金。】四、应用题1、东岗小学组织学生收集树种,五年级收集的树种占总质量的40%,六年级收集的树种占总质量的50%,五年级收集的树种比六年级少20千克。五六年级一共收集树种多少千克?20÷(50%-40%)=200(千克)2、一件商品按20%的利润定价,然后又按8折出售,结果亏了64元,这件商品的成本是多少元?解:设这件商品的成本是 x 元x - 64=[(1 + 20%)x] ×80%x - 64=1.2x × 0.8x - 64=0.96xx-0.96x=640.04x = 64x = 64÷0.04x = 1600答:这件商品的成本是1600 元。【说明: 8折表示按定价的80%出售。x - 64表示现价,(1 + 20%)x表示定价,[(1 + 20%)x] ×80% 表示打8折后的售价,即现价。】3、李明和张华参加赛跑,李明跑到中点时,张华跑了全程的40%,此时两人相距80米,你知道赛程多少米吗?分析:把整个赛程看作单位“1”,那么80米对应的分率是(50%-40%),根据分数除法的意义,用对应量除以对应的分率即可.解答:80÷(50%-40%)=80÷10%=800(米)答:这个赛程长800米。点评:解答此题的关键是找单位“1”,然后用对应量除以对应的分率解决问题。 展开更多...... 收起↑ 资源预览