资源简介 勒纳德(Philipp Eduard Anton Lenard 1862~1947)因在阴极射线研究中所作出的开创性工作,被授予了1905年度诺贝尔物理学奖。勒纳德(左图)从1880年开始研究阴极射线,1892年,当时任赫兹助手的勒纳德研制出了带有“勒纳德窗口”的阴极射线管,该装置可以导引阴极射线离开电离空间,从而能够进一步独立地研究放电过程。勒纳德测量了各种样品对阴极射线的吸收,结果表明,物体对阴极射线的吸收与其密度成反比,阴极射线在物体中的穿透能力随着电压的升高而增强。虽然佩林、维恩和汤姆逊等人和他一样都证实了阴极射线由带负电的粒子组成,但是勒纳德在1898年发表了《关于阴极射线的静电特性》,使他取得了这一发现的优先权。勒纳德还发现高能阴极射线能够穿过原子,他从这一现象出发正确地推断出原子内部的空间相对来说是空虚的。后来,卢瑟福通过(粒子散射实验也得到了同样的证据,并提出了后人普遍接受的原子有核模型。在研究光的发射时,勒纳德认为这与电子的释放和回归有关,他的这一观点只是到了玻尔原子模型确定后才为人们接受。1902年勒纳德发现了光电效应的重要性质:光电子数目随光的强度增加而增加,可是光电子的动能只与光的频率有关,与光的强度无关。勒纳德是一个狭隘民族主义者,曾是希特勒的物理学顾问。尽管如此,勒纳德仍是一位优秀的实验物理学家。夫琅禾费是德国物理学家。1787年3月6日生于斯特劳宾,父亲是玻璃工匠,夫琅禾费幼年当学徒,后来自学了数学和光学。1806年开始在光学作坊当光学机工,1818年任经理,1823年担任慕尼黑科学院物理陈列馆馆长和慕尼黑大学教授,慕尼黑科学院院士。夫琅禾费自学成才,一生勤奋刻苦,终身未婚,1826年6月7日因肺结核在慕尼黑逝世。??? 夫琅禾费集工艺家和理论家的才干于一身,把理论与丰富的实践经验结合起来,对光学和光谱学作出了重要贡献。1814年他用自己改进的分光系统,发现并研究了太阳光谱中的暗线(现称为夫琅禾费谱线),利用衍射原理测出了它们的波长。他设计和制造了消色差透镜,首创用牛顿环方法检查光学表面加工精度及透镜形状,对应用光学的发展起了重要的影响。他所制造的大型折射望远镜等光学仪器负有盛名。他发表了平行光单缝及多缝衍射的研究成果(后人称之为夫琅禾费衍射),做了光谱分辨率的实验,第一个定量地研究了衍射光栅,用其测量了光的波长,以后又给出了光栅方程。 布儒斯特是苏格兰物理学家。1781 年12月11日出生于苏格兰杰德伯勒,1800年毕业于爱丁堡大学,曾任"爱丁堡杂志"、"苏格兰杂志"、"爱丁堡百科全书"编辑,爱丁堡大学教授、校长等。1815年被选为皇家学会会员,1819年获冉福德奖章。??????? 布儒斯特主要从事光学方面的研究。1812年发现当入射角的正切等于媒质的相对折射率时,反射光线将为线偏振光(现称为布儒斯特定律)。他研究了光的吸收,发现人为各向异性介质中的双折射。1816年发明万花筒,1818年发现双轴晶体,1826年制造出马蹄形电磁铁,1835年制造出灯塔用透镜,1849年改进了体视镜。荷兰物理学家、数学家、天文学家。1629年出生于海牙。1655年获得法学博士学位。1663年成为伦敦皇家学会的第一位外国会员。 他的重要贡献有: ①建立了光的波动学说,打破了当时流行的光的微粒学说,提出了光波面在媒体中传播的惠更斯原理。 ②1673年他解决了物理摆的摆动中心问题,测定了重力加速度之值,改进了摆钟,得出了离心力公式,还发明了测微计。 ③他首先发现了双折射光束的偏振性,并用波动观点作了解释。 ④在天文学方面,他供助自己设计和制造的望远镜于1665年,发现了土星卫星----土卫六,且观察到了土星环。 惠更斯的主要著作是1690年出版的《论光》,共有22卷。 惠更斯(christiaan Huygens,1629~1695)荷兰物理学家、天文学家、数学家、他是介于伽利略与牛顿之间一位重要的物理学先驱。 惠更斯1629年4月14日出生于海牙,父亲是大臣、外交官和诗人,常与科学家往来。惠更斯自幼聪明好学,思想敏捷,多才多艺,13岁时就自制一架车床,并受到当时成名人的笛卡儿的直接指导,父亲曾亲热地叫他为“我的阿基米德”.16岁时进莱顿大学攻读法律和数学,两年后转人布雷达大学,1655年获法学博士学位,随即访问巴黎,在那里开始了他重要的科学生涯. 1663年访问英国,并成为刚建不久的皇家学会会员.1666年,应路易十四邀请任刚建立的法国科学院院士.惠更斯体弱多病,全身心献给科学事业,终生未婚.1695年7月8日逝于海牙. 惠更斯处于富裕宽松的家庭和社会条件中,没受过宗教迫害的干扰,能比较自由地发挥自己的才能.他善于把科学实践与理论研究结合起来,透彻地解决某些重要问题,形成了理论与实验结合的工作方法与明确的物理思想,他留给人们的科学论文与著作68种,《全集》有22卷,在碰撞、钟摆、离心力和光的波动说、光学仪器等多方面作出了贡献. 他最早取得成果的是数学,他研究过包络线、二次曲线、曲线求长法,他发现悬链线《摆线》与抛物线的区别,他是概率论的创始人. 在1668~1669年英国皇家学会碰撞问题征文悬赏中,他是得奖者之一.他详尽地研究了完全弹性碰撞问题(当时叫“对心碰撞”).死后综合发表于《论物体的碰撞运动》(1703)中,包括5个假设和13个命题.他纠正了笛卡儿不考虑动量方向性的错误,并首次提出完全弹性碰撞前后的守恒.他还研究了岸上与船上两个人手中小球的碰撞情况并把相对性原理应用于碰撞现象的研究. 惠更斯从实践和理论上研究了钟摆及其理论.1656年他首先将摆引入时钟成为摆钟以取代过去的重力齿轮式钟.在《摆钟》(1658)及《摆式时钟或用于时钟上的摆的运动的几何证明》(1673)中提出著名的单摆周期公式,研究了复摆及其振动中心的求法.通过对渐伸线、渐屈线的研究找到等时线、摆线.研究了三线摆、锥线摆、可倒摆及摆线状夹片等,图2-2-7是惠更斯的船用钟外形及其内部结构,结构中有摆锤、摆线状夹板、每隔半秒由驱动锤解锁的棘爪等. 在研究摆的重心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量,还引入了反馈装置——“反馈”这一物理思想今天更显得意义重大.设计了船用钟和手表平衡发条,大大缩小了钟表的尺寸.他还用摆求出重力加速度的准确值,并建议用秒摆的长度作为自然长度标准. 惠更斯提出了他的离心力定理,他还研究了圆周运动、摆、物体系转动时的离心力以及泥球和地球转动时变扁的问题等等.这些研究对于后来万有引力定律的建立起了促进作用.他提出过许多既有趣又有启发性的离心力问题. 他设计制造的光学和天文仪器精巧超群,如磨制了透镜,改进了望远镜(用它发现了土星光环等)与显微镜,惠更斯目镜至今仍然采用,还有几一十米长的“空中望远镜”(无管、长焦距、可消色差)、展示星空的“行星机器”(即今天文馆雏型)等. 惠更斯在 1678年给巴黎科学院的信和1690年发表的《光论》一书中都阐述了他的光波动原理,即惠更斯原理.他认为每个发光体的微粒把脉冲传给邻近一种弥漫媒质(“以太”)微粒,每个受激微粒都变成一个球形子波的中心.他从弹性碰撞理论出发,认为这样一群微粒虽然本身并不前进,但能同时传播向四面八方行进的脉冲,因而光束彼此交叉而不相互影响,并在此基础上用作图法解释了光的反射、折射等现象《光论》中最精采部分是对双折射提出的模型,用球和椭球方式传播来解释寻常光和非常光所产生的奇异现象,书中有几十幅复杂的几何图,足以看出他的数学功底. 精确折射定律的最早发现者——斯涅耳(1591-1626) 威里布里德.斯涅耳(Willebrord Snell Van Roijen),荷兰莱顿人,数学家和物理学家,曾在莱顿大学担任过数学教授。斯涅尔最早发现了光的折射定律,从而使几何光学的精确计算成为了可能。一、前人对光折射的研究 古希腊人最早对光现象进行数学处理,欧几里德在他的《光学》里总结了到他那时为止已有的关于光现象的知识和猜测。那时的人们已经知道,在眼睛和被观察物体之间行进的光线是直线;当光线从一个平面反射时,入射角和反射角相等。在这个时期,折射现象虽已为人所知,但还属于经验上的讨论。 古希腊科学典籍中关于光折射的实验记载寥寥无几,最早的应该是公元二世纪托勒密(创建连接到科学人:托勒密,已发布)所做的光的折射实验。他在一个圆盘上装两把能绕盘心旋转的尺子,将圆盘的一半浸入水中。让光线由空气射入水中,就得到它在水中的折射光线,转动两把尺子,使它们分别与入射光线和折射光线重合。然后取出圆盘,按尺子的位置刻下入射角和折射角。他所测出的一系列数据是非常精确的。托勒密大致假定了光的入射角和折射角之间,有一直接的比例关系。托勒密依靠经验发现了折射的规律,但却没有由此得出精确的折射定律。 1609年,伽利略制成了望远镜,并利用他进行了很多科学观测。这些新的发现激励开普勒光折射现象进行了深入的研究,并于1611年出版了《折射光学》一书。开普勒的研究表明,对于两种给定的媒质,小于30度的入射角同相应的折射角成近似固定的比,对于玻璃或水晶,这个比约为3:2。他还表明,这个比对于大的入射角不成立。开普勒试图通过实验发现精确的折射定律,他的方法虽然是正确的,却没有得到其中有规律性的联系。但是,开普勒的研究为后来斯涅耳得出折射定律起到了一定的启示作用。二、折射定律的得出 大约是在1621年,斯涅耳通过实验确立了开普勒想发现而没有能够发现的折射定律。当时斯涅耳注意到了水中的物体看起来象漂浮的现象,并试图揭开其中的奥秘。由此便引出了他对折射现象的研究。 在总结托勒密、开普勒等前人的研究成果后,斯涅耳做了进一步的实验。在实验中,斯涅耳应用开普勒的方法发现:从空气到水里并落在容器垂直面上的一条光线在水中所走的长度,同该光线如按未偏离其原始方向而本来会通过的路程成一定的比。他指出:折射光线位于入射光线和法线所决定的平面内,入射光线和折射光线分别位于法线两侧,入射角的正弦和折射角的正弦的比值对于一定的两种媒质来说是一个常数。这个常数是第二种媒质对第一媒质的相对折射率,即:sin i1/sin i2 =n21 ,n21 = n2 / n1 。其中i1和i2分别为入射角和折射角;n21为折射光所在媒质对入射光所在媒质的相对折射率;n2和n1为两种媒质的绝对折射率。斯涅耳的这一折射定律(也称斯涅耳定律)是从实验中得到的,未做任何的理论推导,虽然正确,但却从未正式公布过。只是后来惠更斯和伊萨克.沃斯两人在审查他遗留的手稿时,才看到这方面的记载。 首次把折射定律表述为今天的这种形式的是笛卡儿,他没做任何的实验,只是从一些假设出发,并从理论上推导出这个定律的。笛卡儿在他的《屈光学》(1637)一书中论述了这个问题。 折射定律是几何学的最重要基本定律之一。斯涅耳的发现为几何光学的发展奠定了理论基础,把光学发展往大大的推进了一步。英国物理学家,考古学家,医生。光的波动说的奠基人之一。1773年6月13日生于米尔费顿,曾在伦敦大学、爱丁堡大学和格丁根大学学习,伦敦皇家学会会员,巴黎科学院院士。1829年5月10日在伦敦逝世。??? 杨自幼天资过人,14岁就通晓拉丁、希腊、法、意、阿拉伯等多种语言。开始时学习医学,后来酷爱物理学,特别是光学和声学,一生在物理、化学、生物、医学、天文、哲学、语言、考古等广泛的领域做了大量的工作,但在科学史上他以作为物理学家而最著名。杨在行医时就开始研究感官的知觉作用,1793年写了第一篇关于视觉的论文,发现了眼睛中晶状体的聚焦作用,1801年发现眼睛散光的原因,由此进入光学的研究领域。他怀疑光的微粒说的正确性,进行了著名的杨氏双孔及双缝干涉实验,首次引入干涉概念论证了光的波动说,又利用波动说解释了牛顿环的成因及薄膜的彩色。他第一个测定了7种颜色光的波长。1817年,他得知A.J.菲涅尔和D.F.J.阿拉果关于偏振光的干涉实验后,提出光是横波。杨对人眼感知颜色问题做了研究,提出了三原色理论。他首先使用运动物体的“能量”一词来代替“活力”,描述材料弹性的杨氏模量也是以他的姓氏命名的,他在考古学方面亦有贡献,曾破译了古埃及石碑上的文字。泊松亮斑 不透明圆板产生的衍射现象,影子中心有一个亮斑 1678年惠更斯向法国科学院提交了著作《光论》。在书中,惠更斯把光波假设为一纵波,推导和解释了光的直线传播、反射和折射定律,书中并末提到关于光谱分解为各种颜色的问题。惠更斯的光的波动理论是研究碰撞现象的一个直接结果,他认为光是一种问题冲量,他类似于球与球之间的冲量的传递,这一研究代表了光学研究中物理观念和数学观念的联合。 波动说的复兴: 英国物理学家托马斯·杨(Thomas Young,1773.6.13- 1829.5.10), 法国物理学家菲涅耳(Augustan Jean Fresnel,1788.5.10-1827.7.14) 托马斯·杨于1801年提出干涉理论。利用干涉观念成功解释了牛顿环,同时也成为第一个近似测定波长的人。在1807年出版的《自然哲学和机械工艺讲义》中对光的干涉再次作了解释。 菲涅耳设计一个实验:利用两个与小孔或不透明障碍物边缘都无关的小光源,用两块彼此接近180°角的平面金属镜,避开衍射,由反射光束来产生干涉现象。并运用大量工具进行数学运算,使实验数据与计算结果一致,被授予优胜奖。菲涅耳用波动说解释影子的存在和光的直线传播,并指出光的干涉现象和声音的干涉现象所以不同,是由于光的波长短得多。这一成功,为光的波动说增添了不少光辉。 泊松根据菲涅耳的计算结果,得出在一个圆片的阴影中心应当出现一个亮点,这是令人难以相信的,过去也从没看到过。但是菲涅耳的理论计算表明,当这个圆片的半径很小时,这个亮点才比较明显。经过实验验证,果真如此。菲涅耳荣获了这一届的科学奖,而后人却戏剧性地称这个亮点为泊松亮斑。 菲涅耳开创了光学的新阶段。他发展了惠更斯和托马斯·杨的波动理论,成为“物理光学的缔造者”。 泊松在弹性理论上的工作??? 泊松(Simon Denis Poission,1781-1840)出生在巴黎附近的一个贫穷家庭,15岁以前没有受过正规教育。1796年被送到舅父家,之后才参加了数学学习。1789年由于他的成绩为全班第一,他被特别准予进入巴黎综合工科学校学习,并且为当时留在该校任教的拉格朗日与拉普拉斯所赏识,1800年毕业任数学教师。??? 泊松的研究工作的主要特点是利用数学方法去处理复杂的力学与物理问题。他的主要贡献有:在偏微分方程上求解,即位势函数及其在引力场与静电学中的应用问题,他提出概率方法的普遍适用性,并得到了泊松分布律,他在分析力学中引进了泊松括号,在弹性力学中引进了泊松比。??? 泊松对弹性力学的兴趣是由纳维的原始工作引起的。他在1829年他发表了题为《弹性体平衡和运动》的研究报告,文中也是用分子间相互作用的理论导出弹性体的运动方程,并且发现在弹性介质中可以传播纵波与横波。他还从理论上推演出各向同性弹性杆在纵向拉伸时,横向收缩应变与纵向伸长之比是一个常数,其值为1/4,但这一值与实验有差距。1848年G·维尔泰姆进行实验认为是1/3。泊松引进的这个比例常数后人称为泊松比。??? 泊松第一次得到了板的挠曲方程,其中E为杨氏模量,他取=0.25。在求解这个方程时他主张附加三个边界条件:剪力、扭矩、弯矩。边界条件的这种提法是不正确的,后来纳维给出了正确的边界条件提法:两个条件,并且给出了边界为简支时的解。他求解了许多具有实际应用价值的圆板的振动问题。 展开更多...... 收起↑ 资源列表 勒纳德.doc 夫琅禾费.doc 布儒斯特.doc 惠更斯.doc 斯涅耳.doc 杨 T.(.doc 泊松亮斑.doc 泊松在弹性理论上的工作.doc 爱因斯坦.doc 菲涅耳.doc 马吕斯.doc