资源简介 小学数学知识点趣味学习—流水行船问题(七)流水行船的要点及解题技巧1、什么叫流水行船问题船在水中航行时,除了自身的速度外,还受到水流的影响,在这种情况下计算船只的航行速度、时间和行程,研究水流速度与船只自身速度的相互作用问题,叫作流水行船问题。 2、流水行船问题中有哪三个基本量? 流水行船问题是行程问题中的一种,因此行程问题中的速度、时间、路程三个基本量之间的关系在这里也当然适用.3、流水行船问题中的三个基本量之间有何关系?流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1) 逆水速度=船速-水速.(2) 这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。 根据加减法互为逆运算的关系,由公式(l)可以得到: 水速=顺水速度-船速, 船速=顺水速度-水速。 由公式(2)可以得到: 水速=船速-逆水速度, 船速=逆水速度+水速。 这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到: 船速=(顺水速度+逆水速度)÷2, 水速=(顺水速度-逆水速度)÷2。船在水中的相遇及追及问题都与水速没有关系:相遇:甲船顺水速度+乙船逆水速度 =(甲船速+水速)+(乙船速-水速) =甲船船速+乙船船速。追及:甲船顺水速度-乙船顺水速度 =(甲船速+水速)-(乙船速+水速) =甲船速-乙船速。 或: 甲船逆水速度-乙船逆水速度 =(甲船速-水速)-(乙船速-水速) =甲船速-乙船速。例题精讲:例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?例2: 一艘小船往返于一段长120千米的航道之间,上行时行了15小时,下行时行了12小时,求船在静水中航行的速度与水速各是多少?例3: 甲、 乙两港相距200千米。一艘轮船从甲港顺流而下10小时到达乙港,已知船速是水速的9倍。这艘轮船从乙港返回甲港用多少个小时? 例1【思路导航】根据条件,用船在静水中的速度+水速=顺水速度,知道了顺水速度和顺水时间,可以求出甲乙两港之间的路程。因为返回时是逆水航行,用船在静水中的速度-水速=逆水速度,再用甲乙两港之间的全长除以逆水速度即可求出乙港返回甲港所需时间。解:顺水速度:13+3=16(千米/小时)逆水速度:13-3=10(千米/小时)全程:16×15=240(千米)返回所需时间:240÷10=20(千米/小时)答:从乙港返回甲港需要24小时。【思维链接】求乙港返回甲港所需要的时间,实际还是要用甲、乙两港的全程除以返回时的速度,也就是说路程、速度和时间三者关系很重要,只是速度上要注意是顺水速度还是逆水速度。例2【思路导航】求船在静水中航行的速度是求船速,用路程除以上行的时间就是逆行速度,路程除以下行时间就是顺水速度。顺水速度与逆水速度的和除以2就是船速,顺水速度与逆水速度的差除以2就是水速。解:逆水速度:120÷15=8(千米/小时)顺水速度:120÷12=10(千米/小时)船速:(10+8)÷2=9(千米/小时)水速:(10--8)÷2=1(千米/小时)答:船在静水中航行的速度是每小时9千米,水速是每小时1千米。【思维链接】因为顺水速度是船速+水速,逆水速度是船速-水速,所以顺水速度与逆水速度相差的数量就相当于2个水流的速度,再除以2就是一个水流的速度。顺水速度与逆水速度的数量和,就相当于2个船速,再除以2就是一个船速。例3【思路导航】根据甲、乙两港的距离和从甲港到乙港的时间可以求出顺水速度是每小时200÷10=20(千米/小时),顺水速度是船速与水速的和,已知船速是水速的9倍,可以求出水速是20÷(1+9)=2(千米/小时),船速为2×9=18(千米/小时),逆水速度为18-2=16(千米/小时)解:顺水速度:200 ÷10=20(千米/小时)水速:20÷(1+9)=2(千米/小时)船速:2×9=18(千米/小时)逆水速度:18-2=16(千米/小时)返回时间:200÷16=12.5(小时)答:这艘轮船从乙港返回甲港用12.5个小时。【思维链接】此题中“已知船速是水速的9倍”,可知船速与水速的和相当于水速的(1+9)倍,也就是顺水速度相当于水速的(1+9)倍,根据这个倍数关系我们就可以轻松的求出水速和船速。 小学数学知识点趣味学习—相遇问题(六)相遇问题的要点及解题技巧1、概念:两个运动物体作相向运动或在环形跑道上作背向运动,随着时间的发展,必然面对面地相遇,这类问题叫做相遇问题。2、特点:它的特点是两个运动物体共同走完整个路程。小学数学教材中的行程问题,一般是指相遇问题。3、类型:相遇问题根据数量关系可分成三种类型:求路程,求相遇时间,求速度。4、三者的基本关系及公式:它们的基本关系式如下:总路程=(甲速+乙速)×相遇时间相遇时间=总路程÷(甲速+乙速)另一个速度=甲乙速度和-已知的一个速度速度和:两个运动物体(人)在单位时间(时、分、秒)所行驶的速度和,即:速度和=甲速+乙速。相遇时间:两个运动物体(人)同时出发到相遇所用的时间。相遇路程:两个运动物体(人)同时出发到相遇所走的路程。基本的数量关系是:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间解答相遇问题,应注意物体运动的方向、出发时间、相遇时间、是否相遇等。关键是找出两个物体的速度和,然后根据两地路程求出相遇时间,或根据相遇时间求出两地路程。稍复杂的,可借助线段图帮助理解题意,找出解题途径。例1:甲、乙两人从相距54千米的两地,同时相向而行,甲每小时行4千米,乙每小时行5千米,几小时后两人相遇?例2:甲、乙两人同时从两地出发,相向而行,距离是24千米。甲每小时走4千米,乙每小时走2千米,甲带着一只狗,狗每小时走5千米,这只狗同甲一道出发,碰到乙的时候,它又掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。问:这只狗一共走了多少千米?例1【分析与解】这是一道最典型,最基本的相遇问题的应用题。出发时甲、乙两人相距54千米,以后两人的距离每小时都缩短4+5=9(千米),即两人的速度和。所以54千米里有几个9千米就是经过几小时相遇。解:4+5=9(千米/时)………………表示两人的速度和 54÷9=6(小时)答:6小时后两人相遇。例2【分析与解】对于这道题,有人认为:要求狗与甲、乙相遇的路程,就要把狗与乙相遇走的路程,与甲相遇走的路程,再与乙相遇走的路程……都求出来,然后再相加,算出结果。但是,仔细想想,狗在甲、乙两人之间要跑多少个来回,每次来回所用的时间是多少,这些量我们都无法求出。再认真审题,不难发现,不论狗在甲、乙两人间走了多少个来回,狗走的路程所用的总时间等于甲、乙两人相遇所用的时间,这是不变的关系。所以,只要求出狗走的时间,也就是只要求出甲、乙两人相遇所用的时间,就可求出狗所走的路程,这样原问题就转化为甲、乙两人相遇时间的问题。在这个问题中,甲、乙两人开始相距与两人的速度都是已知的,所以,根据相遇问题的基本关系,甲、乙两人相遇的时间就可以求出了。解:4+2=6(千米/时)………………表示甲、乙两人的速度和 24÷6=4(小时)………………表示甲、乙两人相遇所用的时间由于甲、乙两人相遇所用的时间等于狗来回走所用的时间总和 4×5=20(千米)………………表示狗往返数次一共走的路程答:这只狗一共走了20千米。 展开更多...... 收起↑ 资源列表 小学数学知识点趣味学习—流水行船问题(七).docx 小学数学知识点趣味学习—相遇问题(六).docx