资源简介 小学数学知识点趣味学习—行程问题之多人行程(三)多人行程的要点及解题技巧行程问题是小学奥数中难度系数比较高的一个模块,在小升初考试和各大奥数杯赛中都能见到行程问题的身影。行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.简单行程:路程=速度×时间2.相遇问题:路程和=速度和×时间3.追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。如“多人行程问题”,实际最常见的是“三人行程”例题:例1:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。在途中,甲和乙相遇后3分钟和丙相遇。问:这个花圃的周长是多少米?例2:甲乙丙三个小分队都从A地到B地进行野外训练,上午6时,甲乙两个小队一起从A地出发,甲队每小时走5千米,乙队每小时走4千米,丙队上午8时才从A地出发,傍晚6时,甲丙两队同时到达B地,那么丙队追上乙队的时间是上午( )时。 例1分析:这个三人行程的问题由两个相遇、一个追击组成,题目中所给的条件只有三个人的速度,以及一个“3分钟”的时间。第一个相遇:在3分钟的时间里,甲、丙的路程和为(40+36)×3=228(米)第一个追击:这228米是由于在开始到甲、乙相遇的时间里,乙、丙两人的速度差造成的,是逆向的追击过程,可求出甲、乙相遇的时间为228÷(38-36)=114(分钟)第二个相遇:在114分钟里,甲、乙二人一起走完了全程所以花圃周长为(40+38)×114=8892(米)我们把这样一个抽象的三人行程问题分解为三个简单的问题,使解题思路更加清晰。总之,行程问题是重点,也是难点,更是锻炼思维的好工具。只要理解好“三个量”之间的“三个关系”,解决行程问题并非难事!例2分析:从上午6时到下午6时共经过12小时,则A、B两地的距离为5×12=60千米,丙上午8时出发,则全程比甲少用8时-6时=2小时,所以丙的速度为每小时60÷(12-2)=6千米。由于丙出发时,乙已行了4×2=8千米,两人的速度差为每小时6-4=2千米,则丙追上乙需要8÷2=4小时,所以丙追上乙的时间是8时+4小时=12时。 解:6时+6时=12时,8时-6时=2时; 5×12÷(12-2) =60÷10,=6(千米);2×4÷(6-4)=8÷2,=4(小时)8时+4小时=12时。即丙在上午12时追上乙。故答案为:12。小学数学知识点趣味学习—行程问题之追及问题(四)追及问题的要点及解题技巧1、多人相遇追及问题的概念及公式多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。所有行程问题都是围绕这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化。由此还可以得到如下两条关系式:多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.2、多次相遇追及问题的解题思路所有行程问题都是围绕""这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解。多次相遇与全程的关系1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。即甲第1次如果走了N米,以后每次都走2N米。2.同地同向出发:第1次相遇,共走2个全程; 第2次相遇,共走4个全程; 第3次相遇,共走6个全程; …………,………………; 第N次相遇,共走2N个全程; 3、多人多次相遇追及的解题关键 多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差例题精讲例1:甲、乙两人在相距16千米的A、B两地同时出发,同向而行。甲步行每小时行4千米,乙骑车在后,每小时速度是甲的3倍,几小时后乙能追上甲??例2:名士小学一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇??例3:甲、乙两人分别从A、B两地同时出发,相向而行,4小时可以相遇。如果两人每小时都少行1.8千米,那么要6小时才能相遇,问AB两地的距离??例4:小晶8时整出门,步行去10千米远的天河城购物中心,他每小时步行3千米,可是他每走40分钟就要休息10分钟,问小晶什么时间到达天河城购物中心??例5:某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米。李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用多少秒??例1【分析】此题是两人同向运动问题,乙追甲,利用追及问题的关系式,就可以解决问题。??解:16÷(3×4-4)=2(小时)答:2小时后乙能追上甲。例2【分析】当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。解:甲乙的速度差:300-250=50(米)??????甲追上乙所用的时间:?400÷50=8(分钟)?答:经过8分钟两人相遇。?例3【分析】按原速行走,4小时相遇,如果每小时都减少1.8千米,就要6小时,多用了2小时,假如两人减速后先行4小时,则不可能相遇,这时两人应该相距(1.8×2×4)千米,这段路两人再共行2小时,这样就可以求出减速后的速度和,再乘以减速后的时间,就可以求出两地路程。?解:每小时少步行1.8千米,4小时少步行路程:?1.8×2×4=14.4(千米)?两人减速后的速度和是:?14.4÷(6-4)=7.2(千米/时)?7.2×6=43.2(千米)????????????????????????答:两地相距43.2千米。例4【分析】小晶50分钟里行40分钟,能行千米,10千米中共有5个2千米,而最后2千米,不需要休息。?解:40分钟共行路程(千米)?????10÷2?=?5?(5-1)×50+40=240(分钟)??????8+240÷60=12时?答:小晶12时到达天河城购物中心。?例5【分析】?要求一共要用多少分钟,首先必须求出队伍的长度,然后可以参照例2解题。?解:这支路队伍长度:(202÷2-1)×0.5?=50(米)?????赶上队头所需要时间:50÷(5-3)=25(秒)?????返回队尾所需时间:50÷(5+3)=6.25(秒)??一共用的时间:25+6.25=31.25(秒)?答:一共要用31.25秒。? 展开更多...... 收起↑ 资源预览