第五章 特殊平行四边形单元测试卷A(含解析)

资源下载
  1. 二一教育资源

第五章 特殊平行四边形单元测试卷A(含解析)

资源简介







特殊平行四边形单元测试卷(A)
一、单选题
1.下列说法中,正确个数有(  )
①对顶角相等;
②两直线平行,同旁内角相等;
③对角线互相垂直的四边形为菱形;
④对角线互相垂直平分且相等的四边形为正方形.
A.1个 B.2个 C.3个 D.4个
2.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=(  )

A.1 B. C. D.
3.如图,在矩形ABCD中,AB=8,AD=6,过点D作直线m∥AC,点E、F是直线m上两个动点,在运动过程中EF∥AC且EF=AC,四边形ACFE的面积是( )

A.48 B.40 C.24 D.30
4.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是(  )
A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC
5.如图,在菱形中,对角线与相交于点,,垂足为,若,则的大小为( )

A.75° B.65°
C.55° D.50°
6.如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是( )

A.1 B.2 C.3 D.4
7.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平面图形是( )

A.矩形 B.三角形 C.梯形 D.菱形
8.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )

A.4 B.6 C.8 D.10
9.下列命题中,真命题是(  )
A.两条对角线相等的四边形是矩形
B.两条对角线互相垂直的四边形是菱形
C.两条对角线互相垂直且相等的四边形是正方形
D.两条对角线互相平分的四边形是平行四边形

10.顺次连接对角线垂直且相等的四边形各边中点,所得四边形是( )
A.平行四边形 B.矩形 C.菱形 D.正方形

二、填空题
11.如图,正方形ABCD的对角线AC是菱形AEFC的一边,则∠FAB等于 _________ .
12.如图,在?ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为_____.

13.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.

14.边长为5㎝的菱形,一条对角线长是6㎝,则菱形的面积为______㎝2 。
15.如图,在平行四边形ABCD中,添加一个条件_____使平行四边形ABCD是菱形.

16.如图,在梯形ABCD中,AD∥BC,AD=1,BC=4,AC=3,BD=4,则梯形ABCD的面积为______.



三、解答题
17.如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.
(1)求证:四边形ABCD是矩形;
(2)若DE=3,OE=9,求AB、AD的长.

18.如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.

(1)求证:四边形是平行四边形.
(2)若,,则在点的运动过程中:
①当______时,四边形是矩形;
②当______时,四边形是菱形.
19.如图,在中,于点E点,延长BC至F点使,连接AF,DE,DF.

(1)求证:四边形AEFD是矩形;
(2)若,,,求AE的长.
20.如图,平面直角坐标中,把矩形OABC沿对角线OB所在的直线折叠,点A落在点D处,OD与BC交于点E.OA、OC的长是关于x的一元二次方程x2﹣9x+18=0的两个根(OA>OC).
(1)求A、C的坐标.
(2)直接写出点E的坐标,并求出过点A、E的直线函数关系式.
(3)点F是x轴上一点,在坐标平面内是否存在点P,使以点O、B、P、F为顶点的四边形为菱形?若存在请直接写出P点坐标;若不存在,请说明理由.

21.如图,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,F为AB边上一点,满足CF⊥CP,过点B作BM⊥CF,分别交AC、CF于点M、N
(1)若AC=AP,AC=4,求△ACP的面积;
(2)若BC=MC,证明:CP﹣BM=2FN.

22.如图,在Rt△ABC中,,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明理由;
(3)若D为AB中点,则当=______时,四边形BECD是正方形.

23.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=FM
(2)当AE=1时,求EF的长.
24.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.

(1)求证:四边形AEBD是矩形;
(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.



参考答案
1.B【解析】①对顶角相等,故①正确;
②两直线平行,同旁内角互补,故②错误;
③对角线互相垂直且平分的四边形为菱形,故③错误;
④对角线互相垂直平分且相等的四边形为正方形,故④正确,
故选B.
2.C【解析】如图,延长GH交AD于点P,

∵四边形ABCD和四边形CEFG都是矩形,
∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,
∴AD∥GF,
∴∠GFH=∠PAH,
又∵H是AF的中点,
∴AH=FH,
在△APH和△FGH中,
∵,
∴△APH≌△FGH(ASA),
∴AP=GF=1,GH=PH=PG,
∴PD=AD﹣AP=1,
∵CG=2、CD=1,
∴DG=1,
则GH=PG=×=,故选:C.


3.A【解析】根据在运动过程中EF∥AC且EF=AC
四边形ACFE为平行四边形
过D作DM垂直AC于点M
根据等面积法,在中
可得四边形ACFE为平行四边形的高为

故选A

4.B
【解析】A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;
B、∠A=∠C不能判定这个平行四边形为矩形,错误;
C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;
D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确,
故选B.
5.B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加,即可得出.选B.
6.A【解析】∵四边形ABCD是正方形,
∴∠EDB=∠OBF,DO=BO,
在△EDO和△FBO中,

∴△DEO≌△BFO(ASA),
∴S△DEO=S△BFO,
阴影面积 故选A.
7.D【解析】由第三个图可以看出:最后从两次折叠的交点处剪去一个直角三角形,
由于是两次折叠得到的图形,那么所得到图形的4条边都是所剪直角三角形的斜边.
故选D.
8.C【解析】∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴AC=BD=4,OA=OC,OB=OD,
∴OD=OC=AC=2,
∴四边形CODE是菱形,
∴四边形CODE的周长为:4OC=4×2=8.故选C.
9.D
【解析】
A、对角线相等且互相平分的平行四边形是矩形,故错误;
B、两条对角线互相垂直的平行四边形是菱形,故错误;
C、两条对角线互相垂直平分且相等的四边形是正方形,故错误;
D、两条对角线互相平分的四边形是平行四边形,故正确,故选D.
10.D
【解析】由等腰梯形ABCD,得到AC=BD,根据三角形的中位线定理推出EH=FG,=EF,EH∥FG,即四边形是菱形,再推出∠E=90°,即可得出答案.

解:∵等腰梯形ABCD,AD∥BC,
∴AC=BD,
∵E为AD的中点,H为DC的中点,
∴EH∥AC,EH=AC,
同理FG∥AC,FG=AC,
EF∥DB,EF=DB,
∴EH=FG=EF,EH∥FG,
∴四边形EFGH是菱形,
∵AC⊥DB,
∴∠AOD=90°,
∵EH∥AC,FG∥AC,
∴∠FEH=∠HMO=∠AOD=90°,
∴四边形EFGH是正方形.故选D.
11.22.5°
【解析】∵AC是正方形的对角线,
∴∠BAC=×90°=45°,
∵AF是菱形AEFC的对角线,
∴∠FAB=∠BAC=×45°=22.5°.
12.20【解析】当AE⊥BC时,四边形AEFD的周长最小,
∵AE⊥BC,AB=2,∠B=60°,
∴AE=3,BE=,
∵△ABE沿BC方向平移到△DCF的位置,
∴EF=BC=AD=7,
∴四边形AEFD周长的最小值为:14+6=20,故答案为:20.

13.75
【解析】因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,
因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.
所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.
所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,
所以∠BAE=15°,所以∠AEB=90°-15°=75°.
故答案为75.

14.24
【解析】如图所示:

设BD=6cm,AD=5cm,∴BO=DO=3cm,∴AO=CO==4(cm)
∴AC=8cm,∴菱形的面积是:×6×8=24(cm?).故答案为:24.
15.AB=BC(或AC⊥BD)答案不唯一
【解析】添加条件:AB=BC,根据邻边相等的平行四边形是菱形可以判定四边形ABCD是菱形.
故答案为AB=BC.
16.6【解析】过点D作DE∥AC,交BC的延长线于点E,

则四边形ACED是平行四边形,
∴DE=AC=3,CE=AD=1,
在三角形BDE中,∵BD=4,DE=3,BE=5,
∴根据勾股定理的逆定理,得三角形BDE是直角三角形,
∵四边形ACED是平行四边形
∴AD=CE,
∴AD+BC=BE,
∵梯形ABCD与三角形BDE的高相等,
∴梯形的面积即是三角形BDE的面积,即3×4÷2=6,故答案是:6.
17.(1)证明见解析;(2)AB、AD的长分别为3和5.
【解析】(1)证明:∵AB⊥OM于B,DE⊥ON于E,
∴.
在Rt△ABO与Rt△DEA中,
∵∴Rt△ABO≌Rt△DEA(HL).
∴∠AOB=∠DAE.∴AD∥BC.
又∵AB⊥OM,DC⊥OM,∴AB∥DC.
∴四边形ABCD是平行四边形.
∵,∴四边形ABCD是矩形;
(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=3.
设AD=x,则OA=x,AE=OE-OA=9-x.
在Rt△DEA中,由得:
,解得.
∴AD=5.即AB、AD的长分别为3和5.
18.(1)、证明过程见解析;(2)、①、2;②、4.
【解析】(1)、证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,
∴BF=CF,在△DCF和△EBF中,∠CDF=∠FEB,∠DCF=∠EBF,FC=BF,
∴△EBF≌△DCF(AAS), ∴DC=BE, ∴四边形BECD是平行四边形;
(2)、①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;
∴∠ECB=30°,∴BE=BC=2,
②BE=4,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,
∴△CBE是等边三角形,∴BE=BC=4.
(1)见解析;(2)
【解析】(1)证明:∵CF=BE,
∴CF+EC=BE+EC.
即?EF=BC.
∵在?ABCD中,AD∥BC且AD=BC,
∴AD∥EF且AD=EF.
∴四边形AEFD是平行四边形.
∵AE⊥BC,
∴∠AEF=90°.
∴四边形AEFD是矩形;
(2)∵四边形AEFD是矩形,DE=8,
∴AF=DE=8.
∵AB=6,BF=10,
∴AB2+AF2=62+82=100=BF2.
∴∠BAF=90°.
∵AE⊥BF,
∴△ABF的面积=AB?AF=BF?AE.
∴AE=.
20.(1)A(6,0),C(0,3);(2)E(,3),y=﹣x+;(3)满足条件的点P坐标为(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).
【解析】(1)由x2﹣9x+18=0可得x=3或6,
∵OA、OC的长是关于x的一元二次方程x2﹣9x+18=0的两个根(OA>OC),
∴OA=6,OC=3,
∴A(6,0),C(0,3).
(2)如图1中,

∵OA∥BC,
∴∠EBC=∠AOB,
根据翻折不变性可知:∠EOB=∠AOB,
∴∠EOB=∠EBO,
∴EO=EB,设EO=EB=x,
在Rt△ECO中,∵EO2=OC2+CE2,
∴x2=32+(6﹣x)2,
解得x=,
∴CE=BC﹣EB=6﹣=,
∴E(,3),
设直线AE的解析式为y=kx+b,则有,
解得,
∴直线AE的函数解析式为y=﹣x+.
(3)如图,OB==3.
①当OB为菱形的边时,OF1=OB=BP1=3=,故P1(6﹣3,3),
OF3=P3F3=BP3=3,故P3(6+3,3).
②当OB为菱形的对角线时,∵直线OB的解析式为y=x,
∴线段OB的垂直平分线的解析式为y=﹣2x+,
可得P2(,3),
③当OF4问问对角线时,可得P4(6,﹣3)
综上所述,满足条件的点P坐标为(6﹣3,3)或(6+3,3)或(,3)或(6,﹣3).

21.(1);(2)见解析
【解析】(1)∵四边形ABC是正方形,
∴AD= CD,∠ADC =90°,
∴AC=,
∵AC=4,
∴AD=CD=4,
∵AC=AP,
∴AP=,
∴S△ACP=AP×CD
=××4
=7;
(2)在CF上截取FN=NG,连接BG,
∵四边形ABCD是正方形,
∴AB=CB=CD,
∠CBF=∠CDP=∠BCF+∠FCD=90°,
又∵CF⊥CP,
∴∠DCP+∠FCD=90°,
∴∠BCF=∠BCD,
在△BCF和△DCP中,

∴△BCF≌△DCP,
∴CF=CP,
∵BC=MC,BM⊥CF,
∴∠BCF=∠ACF=∠BCA=22.5°,
∴∠CFB=67.5°,
∵FC⊥BM,FN=NG,
∴BF=BG,
∴∠FBG=45°,∠FBN=22.5°,
∴∠CBG=45°,
在△BCG和△BAN中,

∴△BCG≌△ABM,
∴BM=CG,
∴CF﹣CG=FG,
∵BF=BG,BM⊥CF,
∴FN=NG,
∴CP﹣BM=2FN.

22.(1)详见解析;(2)菱形;(3)当∠A=45°,四边形BECD是正方形.
【解析】(1)∵DE⊥BC,
∴∠DFP=90°,∵∠ACB=90°,
∴∠DFB=∠ACB,∴DE//AC,
∵MN//AB,∴四边形ADEC为平行四边形,∴CE=AD;
(2)菱形,理由如下:
在直角三角形ABC中,
∵D为AB中点,
∴BD=AD,
∵CE=AD,
∴BD=CE,
∴MN//AB,
∴BECD是平行四边形,
∵∠ACB=90°,D是AB中点,
∴BD=CD,(斜边中线等于斜边一半)
∴四边形BECD是菱形;
(3)若D为AB中点,则当∠A=45°时,四边形BECD是正方形,
理由:∵∠A=45°,∠ACB=90°,
∴∠ABC=45°,
∵四边形BECD是菱形,
∴DC=DB,
∴∠DBC=∠DCB=45°,
∴∠CDB=90°,
∵四边形BECD是菱形,
∴四边形BECD是正方形,
故答案为45°.
23.(1)见解析;
(2) .
【解析】(1)∵△DAE逆时针旋转90°得到△DCM
∴DE=DM ∠EDM=90°
∴∠EDF + ∠FDM=90°
∵∠EDF=45°
∴∠FDM =∠EDM=45°
∵ DF= DF
∴△DEF≌△DMF
∴ EF=MF …
(2) 设EF=x ∵AE=CM=1
∴ BF=BM-MF=BM-EF=4-x
∵ EB=2
在Rt△EBF中,由勾股定理得

解之,得 
24.解:(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形.
∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC.
∴∠ADB=90°.
∴平行四边形AEBD是矩形.
(2)当∠BAC=90°时,矩形AEBD是正方形.理由如下:
∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.
∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.
【解析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;
(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.
(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,
∴四边形AEBD是平行四边形,
∵AB=AC,AD是∠BAC的角平分线,
∴AD⊥BC,
∴∠ADB=90°,
∴平行四边形AEBD是矩形;
(2)当∠BAC=90°时,
理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,
∴AD=BD=CD,
∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.













试卷第1页,总3页


试卷第1页,总3页


展开更多......

收起↑

资源预览