资源简介 求数列通项公式的方法总结一、公式法(定义法)根据等差数列、等比数列的定义求通项二、累加、累乘法 1、累加法 适用于: 若,则 两边分别相加得 例1 已知数列满足,求数列的通项公式。解:由得则所以数列的通项公式为。例2 已知数列满足,求数列的通项公式。解法一:由得则所以解法二:两边除以,得,则,故因此,则2、累乘法 适用于: 若,则两边分别相乘得,例3 已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为三、待定系数法 适用于分析:通过凑配可转化为; 解题基本步骤:1、确定2、设等比数列,公比为3、列出关系式4、比较系数求,5、解得数列的通项公式6、解得数列的通项公式例4 已知数列中,,求数列的通项公式。解法一: 又是首项为2,公比为2的等比数列 ,即解法二: 两式相减得,故数列是首项为2,公比为2的等比数列,再用累加法的……例5 已知数列满足,求数列的通项公式。解法一:设,比较系数得,则数列是首项为,公比为2的等比数列,所以,即解法二: 两边同时除以得:,下面解法略注意:例6 已知数列满足,求数列的通项公式。解:设 比较系数得, 所以 由,得则,故数列为以为首项,以2为公比的等比数列,因此,则。注意:形如时将作为求解分析:原递推式可化为的形式,比较系数可求得,数列为等比数列。例7 已知数列满足,求数列的通项公式。解:设 比较系数得或,不妨取,则,则是首项为4,公比为3的等比数列,所以四、迭代法例8 已知数列满足,求数列的通项公式。解:因为,所以又,所以数列的通项公式为。注:本题还可综合利用累乘法和对数变换法求数列的通项公式。 展开更多...... 收起↑ 资源预览