2020年重庆市近三年中考B卷真题重组模拟卷(解析版)

资源下载
  1. 二一教育资源

2020年重庆市近三年中考B卷真题重组模拟卷(解析版)

资源简介










2020年重庆市近三年中考B卷真题重组模拟卷
一.选择题(共12小题)
1.(2017?重庆)5的相反数是(  )
A.﹣5 B.5 C.﹣ D.
2.(2018?重庆)下列图形中,是轴对称图形的是(  )
A. B. C. D.
3.(2019?重庆)下列命题是真命题的是(  )
A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3
B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9
C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3
D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:9
4.(2017?重庆)下列调查中,最适合采用抽样调查的是(  )
A.对某地区现有的16名百岁以上老人睡眠时间的调查
B.对“神舟十一号”运载火箭发射前零部件质量情况的调查
C.对某校九年级三班学生视力情况的调查
D.对某市场上某一品牌电脑使用寿命的调查
5.(2019?重庆)抛物线y=﹣3x2+6x+2的对称轴是(  )
A.直线x=2 B.直线x=﹣2 C.直线x=1 D.直线x=﹣1
6.(2018?重庆)下列命题是真命题的是(  )
A.如果一个数的相反数等于这个数本身,那么这个数一定是0
B.如果一个数的倒数等于这个数本身,那么这个数一定是1
C.如果一个数的平方等于这个数本身,那么这个数一定是0
D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0
7.(2019?重庆)估计的值应在(  )
A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间
8.(2018?重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(  )

A.9 B.7 C.﹣9 D.﹣7
9.(2017?重庆)如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是(  )

A.4﹣2π B.8﹣ C.8﹣2π D.8﹣4π
10.(2019?重庆)如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为(  )
(参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)

A.65.8米 B.71.8米 C.73.8米 D.119.8米
11.(2017?重庆)若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是(  )
A.3 B.1 C.0 D.﹣3
12.(2019?重庆)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为(  )

A.8 B.4 C.2+4 D.3+2
二.填空题(共6小题)
13.(2019?重庆)计算:(﹣1)0+()﹣1=   .
14.(2018?重庆)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是   (结果保留π).

15.(2017?重庆)如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC=   度.

16.(2018?重庆)如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于   .

17.(2019?重庆)一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为   米.

18.(2018?重庆)为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是   (商品的销售利润率=×100%)
三.解答题(共8小题)
19.(2017?重庆)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.

20.(2018?重庆)某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)八年级(3)班学生总人数是   ,并将条形统计图补充完整;
(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.

21.(2017?重庆)计算:
(1)(x+y)2﹣x(2y﹣x);
(2)(a+2﹣)÷.
22.(2019?重庆)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数﹣“纯数”.
定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.
例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位.
(1)请直接写出1949到2019之间的“纯数”;
(2)求出不大于100的“纯数”的个数,并说明理由.
23.(2017?重庆)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.
(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?
(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.
24.(2018?重庆)如图,在?ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.
(1)若BC=12,AB=13,求AF的长;
(2)求证:EB=EH.

25.(2018?重庆)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.
(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;
(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.
26.(2017?重庆)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.

(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.





















2020年重庆市近三年中考B卷真题重组模拟卷
参考答案
一.选择题(共12小题)
1.【解答】解:5的相反数是﹣5,
故选:A.
2.【解答】解:A、不是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项正确.
故选:D.
3.【解答】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;
B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;
C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;
D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;
故选:B.
4.【解答】解:A、人数不多,容易调查,适合普查.
B、对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;
C、班内的同学人数不多,很容易调查,因而采用普查合适;
D、数量较大,适合抽样调查;
故选:D.
5.【解答】解:∵y=﹣3x2+6x+2=﹣3(x﹣1)2+5,
∴抛物线顶点坐标为(1,5),对称轴为x=1.
故选:C.
6.【解答】解:A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;
B、如果一个数的倒数等于这个数本身,那么这个数一定是1,例如:﹣1的倒数也是﹣1,故是假命题;
C、如果一个数的平方等于这个数本身,那么这个数一定是0,例如:1的平方也是1,故是假命题;
D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,例如:1的算术平方根也是1,故是假命题;
故选:A.
7.【解答】解:=+2=3,
∵3=,
6<<7,
故选:B.
8.【解答】解:∵当x=7时,y=6﹣7=﹣1,
∴当x=4时,y=2×4+b=﹣1,
解得:b=﹣9,
故选:C.
9.【解答】解:∵矩形ABCD,
∴AD=CB=2,
∴S阴影=S矩形﹣S半圆=2×4﹣π×22=8﹣2π,
故选:C.
10.【解答】解:过点E作EM⊥AB与点M,延长ED交BC于G,
∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米,
∴设DG=x,则CG=2.4x.
在Rt△CDG中,
∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20,
∴DG=20米,CG=48米,
∴EG=20+0.8=20.8米,BG=52+48=100米.
∵EM⊥AB,AB⊥BG,EG⊥BG,
∴四边形EGBM是矩形,
∴EM=BG=100米,BM=EG=20.8米.
在Rt△AEM中,
∵∠AEM=27°,
∴AM=EM?tan27°≈100×0.51=51米,
∴AB=AM+BM=51+20.8=71.8米.
故选:B.

11.【解答】解:解不等式组,可得,
∵不等式组有且仅有四个整数解,
∴﹣1≤﹣<0,
∴﹣4<a≤3,
解分式方程+=2,可得y=(a+2),
又∵分式方程有非负数解,
∴y≥0,且y≠2,
即(a+2)≥0,(a+2)≠2,
解得a≥﹣2且a≠2,
∴﹣2≤a≤3,且a≠2,
∴满足条件的整数a的值为﹣2,﹣1,0,1,3,
∴满足条件的整数a的值之和是1.
故选:B.
12.【解答】解:∵∠ABC=45°,AD⊥BC于点D,
∴∠BAD=90°﹣∠ABC=45°,
∴△ABD是等腰直角三角形,
∴AD=BD,
∵BE⊥AC,
∴∠GBD+∠C=90°,
∵∠EAD+∠C=90°,
∴∠GBD=∠EAD,
∵∠ADB=∠EDG=90°,
∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,
即∠BDG=∠ADE,
∴△BDG≌△ADE(ASA),
∴BG=AE=1,DG=DE,
∵∠EDG=90°,
∴△EDG为等腰直角三角形,
∴∠AED=∠AEB+∠DEG=90°+45°=135°,
∵△AED沿直线AE翻折得△AEF,
∴△AED≌△AEF,
∴∠AED=∠AEF=135°,ED=EF,
∴∠DEF=360°﹣∠AED﹣∠AEF=90°,
∴△DEF为等腰直角三角形,
∴EF=DE=DG,
在Rt△AEB中,
BE===2,
∴GE=BE﹣BG=2﹣1,
在Rt△DGE中,
DG=GE=2﹣,
∴EF=DE=2﹣,
在Rt△DEF中,
DF=DE=2﹣1,
∴四边形DFEG的周长为:
GD+EF+GE+DF
=2(2﹣)+2(2﹣1)
=3+2,
故选:D.
二.填空题(共6小题)
13.【解答】解:(﹣1)0+()﹣1=1+2=3;
故答案为3;
14.【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,
故答案为8﹣2π.
15.【解答】解:∵∠ABC与AOC是同弧所对的圆周角与圆心角,∠ABC=40°,
∴∠AOC=2∠ABC=80°.
故答案为:80.
16.【解答】解:由题意可得,
DE=DB=CD=AB,
∴∠DEC=∠DCE=∠DCB,
∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,
∴∠DEC=∠ACE,
∴∠DCE=∠ACE=∠DCB=30°,
∴∠ACD=60°,∠CAD=60°,
∴△ACD是等边三角形,
∴AC=CD,
∴AC=DE,
∵AC∥DE,AC=CD,
∴四边形ACDE是菱形,
∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,
∴AC=,
∴AE=.
17.【解答】解:设小明原速度为x(米/分钟),则拿到书后的速度为1.25x(米/分钟),则家校距离为11x+(23﹣11)×1.25x=26x.
设爸爸行进速度为y(米/分钟),由题意及图形得:.
解得:x=80,y=176.
∴小明家到学校的路程为:80×26=2080(米).
故答案为:2080
18.【解答】解:设A的单价为x元,B的单价为y元,C的单价为z元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a袋,乙的销售量为b袋,由题意,得
A一袋的成本是7.5x=3x+y+z,
化简,得
y+z=4.5x;
乙一袋的成本是x+2y+2z=x+2(y+z)=x+9x=10x,
乙一袋的售价为10x(1+20%)=12x,
甲一袋的售价为10x.
根据甲乙的利润,得
(10x﹣7.5x)a+20%×10xb=(7.5xa+10xb)×24%
化简,得
2.5a+2b=1.8a+2.4b
0.7a=0.4b
=,
故答案为:.
三.解答题(共8小题)
19.【解答】解:∵EF∥GH,
∴∠ABD+∠FAC=180°,
∴∠ABD=180°﹣72°=108°,
∵∠ABD=∠ACD+∠BDC,
∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.
20.【解答】解:(1)调查的总人数为12÷30%=40(人),
所以C项目的人数为40﹣12﹣14﹣4=10(人)
条形统计图补充为:

故答案为40人;
(2)画树状图为:

共有12种等可能的结果数,其中恰好选中1名男生和1名女生担任活动记录员的结果数为8,
所以恰好选中1名男生和1名女生担任活动记录员的概率==.
21.【解答】解:(1)(x+y)2﹣x(2y﹣x)
=x2+2xy+y2﹣2xy+x2
=2x2+y2;
(2)(a+2﹣)÷
=()×

=.
22.【解答】解:(1)显然1949至1999都不是“纯数”,因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位.
在2000至2019之间的数,只有个位不超过2时,才符合“纯数”的定义.
所以所求“纯数”为2000,2001,2002,2010,2011,2012;

(2)不大于100的“纯数”的个数有13个,理由如下:
因为个位不超过2,十位不超过3时,才符合“纯数”的定义,
所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.
23.【解答】解:(1)设该果农今年收获樱桃x千克,
根据题意得:400﹣x≤7x,
解得:x≥50,
答:该果农今年收获樱桃至少50千克;

(2)由题意可得:
100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,
令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,
整理可得:8y2﹣y=0
解得:y1=0,y2=0.125
∴m1=0(舍去),m2=12.5
∴m2=12.5,
答:m的值为12.5.
24.【解答】解:(1)如图,∵BF⊥AC,∠ACB=45°,BC=12,
∴等腰Rt△BCF中,BF=sin45°×BC=12,
又∵AB=13,
∴Rt△ABF中,AF==5;

(2)如图,连接GE,过A作AP⊥AG,交BG于P,连接PE,
∵BE=BA,BF⊥AC,
∴AF=FE,
∴BG是AE的垂直平分线,
∴AG=EG,AP=EP,
∵∠GAE=∠ACB=45°,
∴△AGE是等腰直角三角形,即∠AGE=90°,
△APE是等腰直角三角形,即∠APE=90°,
∴∠APE=∠PAG=∠AGE=90°,
又∵AG=EG,
∴四边形APEG是正方形,
∴PF=EF,AP=AG=CH,
又∵BF=CF,
∴BP=CE,
∵∠APG=45°=∠BCF,
∴∠APB=∠HCE=135°,
∴△APB≌△HCE(SAS),
∴AB=EH,
又∵AB=BE,
∴BE=EH.

25.【解答】解:(1)根据“极数”的意义得,1287,2376,8712,
任意一个“极数”都是99的倍数,
理由:设对于任意一个四位数且是“极数”n的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)
∴百位数字为(9﹣x),千位数字为(9﹣y),
∴四位数n为:1000(9﹣y)+100(9﹣x)+10y+x=9900﹣990y﹣99x=99(100﹣10y﹣x),
∵x是0到9的整数,y是0到8的整数,
∴100﹣10y﹣x是整数,
∴99(100﹣10y﹣x)是99的倍数,
即:任意一个“极数”都是99的倍数;

(2)设四位数m为“极数”的个位数字为x,十位数字为y,(x是0到9的整数,y是0到8的整数)
∴m=99(100﹣10y﹣x),
∵m是四位数,
∴m=99(100﹣10y﹣x)是四位数,
即1000≤99(100﹣10y﹣x)<10000,
∵D(m)==3(100﹣10y﹣x),
∴30≤3(100﹣10y﹣x)≤303
∵D(m)完全平方数,
∴3(100﹣10y﹣x)既是3的倍数也是完全平方数,
∴3(100﹣10y﹣x)只有36,81,144,225这四种可能,
∴D(m)是完全平方数的所有m值为1188或2673或4752或7425.
26.【解答】解:(1)∵y=x2﹣x﹣,
∴y=(x+1)(x﹣3).
∴A(﹣1,0),B(3,0).
当x=4时,y=.
∴E(4,).
设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,
解得:k=,b=.
∴直线AE的解析式为y=x+.

(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.
∴直线CE的解析式为y=x﹣.
过点P作PF∥y轴,交CE与点F.

设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),
则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.
∴△EPC的面积=×(x2+x)×4=﹣x2+x.
∴当x=2时,△EPC的面积最大.
∴P(2,﹣).
如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.

∵K是CB的中点,
∴k(,﹣).
∴tan∠KCP=.
∵OD=1,OC=,
∴tan∠OCD=.
∴∠OCD=∠KCP=30°.
∴∠KCD=30°.
∵k是BC的中点,∠OCB=60°,
∴OC=CK.
∴点O与点K关于CD对称.
∴点G与点O重合.
∴点G(0,0).
∵点H与点K关于CP对称,
∴点H的坐标为(,﹣).
∴KM+MN+NK=MH+MN+GN.
当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.
∴GH==3.
∴KM+MN+NK的最小值为3.

(3)如图3所示:

∵y′经过点D,y′的顶点为点F,
∴点F(3,﹣).
∵点G为CE的中点,
∴G(2,).
∴FG==.
∴当FG=FQ时,点Q(3,),Q′(3,).
当GF=GQ时,点F与点Q″关于y=对称,
∴点Q″(3,2).
当QG=QF时,设点Q1的坐标为(3,a).
由两点间的距离公式可知:a+=,解得:a=﹣.
∴点Q1的坐标为(3,﹣).
综上所述,点Q的坐标为(3,)或′(3,)或(3,2)或(3,﹣).











展开更多......

收起↑

资源预览