资源简介 平行四边形 知识点及考点梳理知识脉络: 1.四边形的内角和与外角和定理:(1)四边形的内角和等于360°;(2)四边形的外角和等于360°. 2.多边形的内角和与外角和定理:(1)n边形的内角和等于(n-2)180°;(2)任意多边形的外角和等于360°. 3.平行四边形的性质:因为ABCD是平行四边形 4.平行四边形的判定:. 5.矩形的性质:因为ABCD是矩形 6. 矩形的判定:四边形ABCD是矩形. 7.菱形的性质:因为ABCD是菱形 8.菱形的判定:四边形四边形ABCD是菱形. 9.正方形的性质:因为ABCD是正方形 (1) (2)(3) 10.正方形的判定:四边形ABCD是正方形. (3)∵ABCD是矩形又∵AD=AB ∴四边形ABCD是正方形 11.三角形中位线定理: 三角形的中位线平行第三边,并且等于它的一半. 一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二 公式: 1.S菱形 =ab=ch.(a、b为菱形的对角线 ,c为菱形的边长 ,h为c边上的高)2.S平行四边形 =ah. a为平行四边形的边,h为a上的高) 三 常识:※1.若n是多边形的边数,则对角线条数公式是:.2.规则图形折叠一般“出一对全等,一对相似”.3.如图:平行四边形、矩形、菱形、正方形的从属关系.边形的的性质:(1)边形的内角和等于.(2)任意多边形的外角和等于(3)边形共有条对角线(4)在平面内,内角都相等且边都相等的多边形叫做正多边形。(5)正多边形的每个内角等于四边形:四边形的内角和等于360°, 外角和等于360°1、四边形内角中最多有三个钝角,四个直角,三个锐角;2、四边形外角中最多有三个钝角、四个直角、三个锐角,最少没有钝角,没有直角,没有锐角;3、四边形内角与同一个顶点的一个外角互为邻补角.平行四边形的性质:(1)平行四边形的邻角互补,对角相等.(2)平行四边形的对边平行且相等.(3)夹在两条平行线间的平行线段相等.(4)平行四边形的对角线互相平分.平行四边形的判定:(1)定义:两组对边分别平行的四边形是平行四边形.(2)定理1:两组对角分别相等的四边形是平行四边形.(3)定理2:两组对边分别相等的四边形是平行四边形.(4)定理3:对角线互相平分的四边形是平行四边形.(5)定理4:一组对边平行且相等的四边形是平行四边形.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离.平行线间的距离处处相等平行四边形的面积: =BC·AE=CD·BF同底(等底)同高(等高)的平行四边形面积相等.=矩形的性质:(1)对边平行且相等。(2)矩形的四个角都是直角.(3)矩形的对角线相等.(4)矩形是轴对称、中心对称图形.(5) 矩形面积=长×宽矩形的判定:(1)定义:有一个角是直角的平行四边形是矩形.(2)定理1:有三个角是直角的四边形是矩形.(3)定理2:对角线相等的平行四边形是矩形.菱形的性质(1)具有平行四边形的一切性质.(2)菱形的四条边都相等.(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角.(4)菱形是轴对称、中心对称图形.(5) 菱形面积=底×高=对角线乘积的一半菱形的判定(1)定义:有一组邻边相等的平行四边形叫做菱形.(2)定理1:四边都相等的四边形是菱形.(3)定理2:对角线互相垂直的平行四边形是菱形.正方形的性质(1)正方形具有四边形、平行四边形、矩形、菱形的一切性质.(2)正方形的四个角都是直角,四条边都相等.(3)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.(4)正方形是轴对称图形,有4条对称轴.(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个小的全等的等腰直角三角形.(6)正方形一条对角线上一点和另一条对角线的两端距离相等.(7)正方形的面积:若正方形的边长为,对角线长为,则正方形的判定:(1)判定一个四边形为正方形主要根据定义,途径有两种:①先证它是矩形,再证它有一组邻边相等.②先证它是菱形,再证它有一个角为直角.(2)判定正方形的一般顺序:①先证明它是平行四边形;②再证明它是菱形(或矩形);③最后证明它是矩形(或菱形).4.中位线三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。(三角形有三条中位线)三角形中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半。1.定义:平行四边形 两组对边分别平行的四边形是平行四边形矩 形 有一个角是直角的平行四边形是矩形菱 形 有一组邻边相等的平行四边形是菱形正 方 形 有一个角是直角,有一组邻边相等的平行四边形是正方形2.性质:性质 平行四边形 矩形 菱形 正方形对边平行 对边相等 对角相等 对角线互相平分 四边相等 四个角都是直角 对角线相等 对角线互相垂直 每条对角线平分一组对角 3.判定:平行四边形 矩形1.两组对边分别平行的四边形是平行四边形。 (定义) 2.两组对边分别相等的四边形是平行四边形。 3.一组对边平行且相等的四边形是平行四边形。 4.两组对角分别相等的四边形是平行四边形。 5.对角线互相平分的四边形是平行四边形。 1.有一个角是直角的平行四边形是矩形。 (定义) 2.三个角是直角的四边形是矩形。 3.对角线相等的平行四边形是矩形。 其它:对角线相等且互相平分的四边形。菱形 正方形1.有一组邻边相等的平行四边形是菱形。(定义) 2.四边相等的四边形是菱形。 3.对角线互相垂直的平行四边形是菱形。 其它:1对角线垂直且互相平分的四边形是菱形。 2.一条对角线平分一组对角的平行四边形是菱形。 1.有一个角是直角,有一组邻边相等的平行四边形是正方形。(定义) 2.一组邻边相等的矩形是正方形。 3.有一个角是直角的菱形是正方形。 其它:对角线互相平分相等且垂直的四边形是正方形。4.面积公式平行四边形:底×高 菱形:(1)底×高(2)对角线乘积的一半矩形:邻边相乘 正方形:(1)(2)对角线乘积的一半 展开更多...... 收起↑ 资源预览